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Abstract
Global warming is accelerating and the world urgently needs a shift to clean and renewable

energy. Hydropower is currently the largest renewable source of electricity, but its contribution

to climate changemitigation is not yet fully understood. Hydroelectric reservoirs are a source

of biogenic greenhouse gases and in individual cases can reach the same emission rates as

thermal power plants. Little is known about the severity of their emissions at the global scale.

Here we show that the carbon footprint of hydropower is far higher than previously assumed,

with a global average of 173 kg CO2 and 2.95 kg CH4 emitted per MWh of electricity pro-

duced. This results in a combined average carbon footprint of 273 kg CO2e/MWh when using

the global warming potential over a time horizon of 100 years (GWP100). Nonetheless, this is

still below that of fossil energy sources without the use of carbon capture and sequestration

technologies. We identified the damsmost promising for capturing methane for use as alter-

native energy source. The spread among the ~1500 hydropower plants analysed in this study

is large and highlights the importance of case-by-case examinations.

Introduction
The annual emission rates of carbon dioxide (CO2) and methane (CH4), and the consequent
global temperature increase, are accelerating rapidly [1]. To meet the target of limiting the
average temperature increase to 2°C, emission reductions are urgently needed. Even in the case
that emissions are halved in 2050 compared to 1990, there is still a 29% chance that the target
is missed [2]. A portfolio of strategies, coined the stabilization wedges, is available in order to
limit emissions using existing technologies. These strategies include energy efficiency increases,
carbon capture and storage (CSS), alternative (nuclear and renewable) energy sources and for-
est and agricultural conservation [3]. Among these, hydropower is considered a low-carbon
technology helping to mitigate climate change [4]. However, it was ascertained that the carbon
footprint of some hydropower plants is even larger than that of thermal power plants [5]. Emis-
sions are particularly high in tropical regions [6,7] and at high area-to-electricity ratios [5,8].

The emissions from hydroelectric reservoirs arise from the decomposition of organic matter
that was either flooded during reservoir construction, transferred to the reservoir by river run-
off, grown in the reservoir such as by algal production [6], stems from dead trees protruding
from the water [9], or was grown in newly created marshes in the drawdown area [10]. Besides
reservoirs, also other ecosystems influence the greenhouse gas (GHG) fluxes. While rivers and
lakes emit GHGs, forests, peatlands and wetlands rather bind them. The real impact of the res-
ervoir is therefore the difference between GHG emissions before and after flooding. The net
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emissions can either be larger than the gross emissions when carbon sinks are lost or smaller
when emissions have already occurred [6,11]. In the investigated cases, the sink [6] or source
[11] prior to flooding is small compared to the emissions afterwards so that, when also taking
into account the uncertainties, it can be considered as carbon-neutral in non-tropical [11] as
well as tropical regions [12].

Barros et al. [7] compiled data of about 100 CO2 and CH4 emission measurements, as well
as some reservoir and site characteristics, from published literature. Based on this data, he esti-
mated total emissions of hydroelectric reservoirs and analysed the relationship with explana-
tory variables. Hertwich [8] supplemented the dataset with electricity information and an
additional predictor variable to carry out similar analyses. This study sets up a new statistical
model, including additional environmental variables, and applies this model to a global dataset
of ~1500 plants (~43% of global hydropower generation) in order to get a better estimate of
hydropower’s total climate change impact and its range among individual plants.

Materials and Methods

Data collection
We analysed the carbon footprints of 1473 hydroelectric reservoirs across 104 countries, under
the assumption that the emissions prior to flooding are negligible and do not significantly change
the net footprint [11]. Reservoir locations, its purpose and key characteristics were given in the
Global Reservoir and Dam (GRanD) database [13]. This information was linked to annual elec-
tricity generation provided by the CARMA database [14]. The analyses represent the year 2009.

CO2 and CH4 emissions, electricity information and site characteristics as potential predic-
tors of about 100 hydroelectric reservoirs were compiled by Barros et al. [7] and Hertwich [8]
(S1 File). This data serves as a training dataset for statistical modelling from which we estimate
the emissions of the above mentioned 1473 reservoirs.

We tested various variables as predictors including area, area-to-electricity ratio, age
(derived from the year when the dam construction was completed), volume, volume-to-area
ratio (as proxy for depth), mean, minimum and maximum temperature [15], net primary pro-
ductivity [16], topsoil organic carbon content [17] and erosion rate [18] as well as their loga-
rithms. All predictors are available in global datasets; however, the dissolved organic carbon
(DOC) used as a predictor by Barros et al. [7] was not available as a global dataset and was
therefore excluded from our analysis. The erosion rate serves as a proxy indicator thereof. If
the year of dam completion was missing, various online sources were consulted including the
AQUASTAT dam database [19].

Generalized linear modelling
We estimated carbon emissions per energy unit (kg/MWh, Model 1) and as areal fluxes
(mg C m-2 d-1, Model 2) using generalized linear models (GLMs) and combined the two mod-
els by averaging (Model A). A Gaussian distribution was assumed for CO2 and a logarithmic
distribution for CH4. In a first step of selecting predictors, explanatory variables were excluded
if they correlated with other predictors (correlation coefficient R� 0.5), but have a weaker
effect on the model output than the alternative predictor. In a second step, we applied multi-
model inference [20] during which competing models with different predictor combinations
and numbers of predictors were compared. The analysis was carried out in R using the package
MuMIn [21] in which models are compared based on Akaike weights, a transformation of
Akaike’s information criterion (AIC) [22]. The final models were evaluated by multiple criteria
in order to ensure a more robust assessment [23]. The criteria used were deviance explained
(DEX), also called adjusted R2, AIC, the percent bias (PBIAS), the normalized root mean
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square error (NRMSE) and the normalized mean absolute error (NMAE). The DEX and AIC
reward a good model fit, but penalize a large number of predictors, which potentially leads to
overfitting. Similar to the coefficient of determination (R2), a higher value of DEX closer to 1
indicates superior model performance. By contrast, a smaller value of AIC implies better model
performance. The remaining criteria only evaluate the performance. Previous models using the
same training dataset [7,8] were rebuilt and the performance was compared to our own efforts.

The measurements in the training dataset are likely to contain errors: 1) for CO2 due to neg-
ligence of carbon burial and 2) for CH4 due to negligence of methane ebullition (bubbling) or
sampling errors. Therefore, correction factors were derived and it was assumed that 1) the pre-
dicted carbon footprints should be 13% lower and these excess emissions should be deducted
from CO2, and 2) predicted CH4 emissions are underestimated and should be increased by a
factor of 1.4 (Model AC, S2 File).

Global estimates
The GLMs were subsequently applied to the global dataset of 1473 hydroelectric reservoirs for
which the predictors were extracted from the same global datasets as the training dataset. CO2

and CH4 emissions were aggregated to carbon dioxide equivalents (CO2e) by assuming a global
warming potential of 34 kg CO2e/kg CH4 over a time horizon of 100 years (GWP100) and for sen-
sitivity analyses also assuming a global warming potential of 86 kg CO2e/kg CH4 over a time hori-
zon of 20 years (GWP20) [24]. Although the global warming potential of biogenic CO2 can differ
from fossil CO2, they were assumed to be equal, as the flooded biomass is not replanted and there-
fore no significant removal of emissions during regrowth can take place [25]. Potential sequestra-
tion of CO2 in algae and fish biomass of dams is supposed to be marginal compared to terrestrial
vegetation (S3 File), but might be evaluated more specifically in future research. First, we calcu-
lated production-weighted average emissions per energy unit and then we derived total emissions
by multiplying these with the global hydroelectricity generation in 2009, which amounted to 3551
TWh [26]. In addition, we calculated the median and maximum of the reservoirs’ carbon emis-
sions. Plants with a high potential for energy recovery frommethane emissions (Model AC) were
defined as plants that produce at least 10 kg CH4/MWh and contribute to at least 50% to the car-
bon footprint. All results are presented in more detail in the supporting information (S1 Table).

Allocation
Since reservoirs often fulfil multiple purposes, the environmental impacts should not solely be
attributed to hydropower. Instead, the responsibility should be shared among the purposes of
the reservoir. Therefore, allocation factors (fA) were applied. These factors are based on the
ranking of hydropower among all of the n purposes that the reservoir fulfils [27]:

fA ¼ nþ 1� ranking
Pn

i¼1 i
ð1Þ

Results

Model set-up and evaluation
We set up generalized linear models (GLMs) for estimating CO2 and CH4 emissions based on a
training dataset of ~100 hydroelectric reservoirs [7,8]. The best model (Model 1) for CO2 emis-
sions per energy unit (kg CO2/MWh) includes only two predictors: area-to-electricity ratio
(ATE, km2/GWh) and area (A, km2), while the best model for CH4 emissions (kg CH4/MWh)
used age (AGE, years), ATE and maximum temperature (TMX, °C):
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CO2 ¼ �169:73þ 241:86 � ATEþ 120:34 � lnðAÞ ð2Þ

lnðCH4Þ ¼ �9:81� 0:75 � lnðAGEÞ þ 1:18 � lnðATEÞ þ 4:50 � lnðTMXÞ ð3Þ

As an alternative, we calculate areal fluxes (Model 2) of GHG emissions (mg C m-2 d-1),
which are independent of the energy production and can also be applied to reservoirs with pur-
poses other than hydropower. In the optimal GLM, the model includes the predictors AGE
and the erosion rate (ERR, t ha-1 a-1) for CO2, and additionally A and TMX for CH4:

CO2 ¼ 494:46� 4:07 � AGEþ 8:09 � ERR ð4Þ

lnðCH4Þ ¼ �12:84� 0:03 � AGEþ 0:21 � lnðAÞ � 0:01 � ERR þ 4:88 � lnðTMXÞ ð5Þ

As already pointed out by Hertwich [8], the ATE is the single most important predictor for
emissions per energy unit. Besides river discharge, the hydroelectricity output is largely deter-
mined by the dam height [28], which, in turn, depends strongly on the topography. Mountain-
ous regions with narrow deep river channels require less land and are therefore preferable sites
for reservoirs [29,30].

TMX can be interpreted as a proxy indicator to distinguish tropical from non-tropical reser-
voirs. The higher the TMX, the more likely the reservoir is situated in a tropical region and
therefore the higher the CH4emissions. This finding is in accordance to previous studies that
reported greater emissions, especially of CH4, from tropical reservoirs [6,7].

While CH4 emissions decline with reservoir age, no significant relationship was found
between CO2 emissions and age when setting up the model for GHG emissions per MWh.
However, Barros et al. [7] and Hertwich [8] included an inverse relationship between age and
both types of emissions and it has been included in our alternative approach, with higher
weight for CO2 (Eq 4). Some previous studies confirmed the decrease with age for CO2 [6,7,11]
and CH4 [7]. By contrast, other studies could not ascertain a relationship between CH4 and age
[6] or even found an increasing trend during initial years with a levelling-off at a later stage
[11]. It has to be noted that our results reflect the analysis across hydropower plants as a result
of the training dataset and is not resulting from time series analyses of specific power plants.
Since the production of CH4 strongly depends on the flooded ecosystem type and measure-
ment procedures can deviate (especially with regards to the inclusion of bubbling in CH4 mea-
surements) [6], it is difficult to predict the relationship of CH4 emissions to age, and this might
explain the differences among studies.

The erosion rate was shown to be a significant predictor for modelling areal fluxes of CO2.
It is a proxy indicator for biomass continually transported by the river discharge to the reser-
voir as opposed to the biomass from the initial flooding. How erosion influences CH4 fluxes is
unclear and it remains to be investigated if the small weight of the predictor is a statistical arte-
fact or if there is a weak causal relationship on a global level.

The model of emissions per energy unit better predicts the measurements than the model of
areal fluxes. The same could be observed by comparing the model performance of Barros et al.
[7] for areal fluxes and of Hertwich [8] for emissions per energy unit. As indicated by multiple
performance criteria, the newly developed models outperform those of Barros et al. [7] and
Hertwich [8] with the exception of the model predicting areal CO2 fluxes, which performs
comparably to the previous model (Table 1). However, by including the ERR and TMX, the
models take into account additional environmental conditions relevant for the generation of
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greenhouse gases, whereas the latitude used as predictor by Barros et al. [7] is not a physical
parameter in itself, but might represent the temperature gradient.

Model application to a global dataset
We applied the calibrated model to a dataset of 1473 hydropower plants across the world (Fig
1). Our estimate of total carbon emissions exceeds previous estimates by far, due to large CO2

emissions. By contrast, our CH4 emissions are close to previous estimates. They contribute
~42% to the carbon footprint (Table 2) and therefore do not dominate the footprint results
unless a shorter time horizon of 20 years is considered for calculating the GWP. The higher
global CO2 emissions cannot be explained by outliers, as our maximum value is in the same
order of magnitude as the measured maximum (Table 3). Despite the overall higher emission
estimates, some plants represent small carbon sinks (Fig 1). Allocation of carbon footprints
between multiple purposes of a reservoir leads, on average, to a reduction of ~30% in climate
change impacts associated with hydropower (Table 3).

When allocating the impacts between hydropower and other uses, plants with the largest
hydroelectricity generation of each continent are below the production-weighted global aver-
age emissions, with the exception of the Churchill Falls plant. The high (although not
extreme) footprint of the Churchill Fall plant can be attributed partly to the high area-to-
electricity ratio and partly to being a single purpose reservoir, not allowing for allocation.
Still, each of these largest plants, except Sysenvatnet in Norway, exceed the median (Table 4),
indicating that the average footprint is driven by a few hydroelectric power plants with very
high emissions.

Table 1. Model comparison based on the deviance explained (DEX), the Akaike information criterion (AIC), the percent bias (PBIAS), the normal-
ized root mean square error (NRMSE) and the normalizedmean absolute error (NMAE).

Per energy unit (Model 1) CO2 CH4

This study Hertwich [8] This study Hertwich [8]

DEX 0.940 0.938 (0.944)a 0.837 0.715 (0.786)a

AIC 1675 1680 313 359

PBIASb 0.0 0.0 -28.9 102.5

NRMSEb 0.243 0.247 1.114 3.142

NMAEb 0.602 0.623 1.208 2.727

Areal fluxes (Model 2) This study Barros et al. [7] This study Barros et al. [7]

DEX 0.324 (0.311)c 0.276 (0.40)d 0.670 (0.785)c 0.444 (0.53)d

AIC 2127e (154)c 159 288 (188)c 239

PBIASb 22.3 (-25.7)c -16.4 -50.3 (-44.2)c -22.0

NRMSEb 0.849 (0.928)c 0.902 1.051 (0.896)c 1.006

NMAEb 0.712 (0.546) c 0.425 1.114 (0.787)c 0.983

a The DEXs reported by Hertwich [8] are provided in parentheses. The difference stems from replacing the net primary productivity (NPP) reported in

Hertwich [8] with values extracted from a global dataset [16], in order to reduce missing values. The values in parentheses could be reconstructed.
b All model outputs were transformed to linear emissions per energy unit before evaluating the model performance.
c Values in parentheses represent model performance of a subset of the training dataset to make the two models comparable.
d The DEXs reported by Barros et al. [7] are provided in parentheses. These values could not be reconstructed. For our own evaluation of their model, we did

not add 400 kg CO2/MWh to the CO2 emissions (as they did in order to avoid negative emissions) and we excluded eight values that produced missing

values in our own model.
e Our CO2 model estimated untransformed CO2 emissions, whereas an alternative model was set up to estimate logarithmic emissions to make it

comparable to the model by Barros et al. [7]. Since the AIC also depends on the magnitude of the model output, models estimating untransformed and

transformed outputs cannot be directly compared.

doi:10.1371/journal.pone.0161947.t001
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Fig 1. Carbon footprints of hydropower plants across the world (a) and hydropower plants with highmethane emissions (� 10
kg CH4/MWh) and a large share of methane emissions (� 50% of the carbon footprint) (b). Country boundaries are obtained from
Natural Earth (http://www.naturalearthdata.com/).

doi:10.1371/journal.pone.0161947.g001

Table 2. Global average carbon footprints andmethane shares using different approaches.

Model CO2e (kg/MWh) Share of CH4

Per energy unit (Model 1) 577 16%

Areal fluxes (Model 2) 245 61%

Average of both models (Model A) 411 29%

Corrected average of both models (Model AC) 404 42%

Corrected average of both models with GWP20 661 64%

doi:10.1371/journal.pone.0161947.t002
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Discussion

Climate change impact or renewable energy source?
Although the CH4 stocks in tropical reservoirs might contribute to global warming and climate
change, they also constitute a potential renewable energy source. The gas can be oxidized in
situ or recovered for later energy production with a recovery efficiency of 60% by using low-
cost technologies [31]. Using biogenic CH4 otherwise emitted to the atmosphere as an energy
source is not only cleaner than using the equivalent volume of fossil natural gas, but it also
reduces the need for additional hydroelectric reservoirs. This entails far more benefits than
reducing the climate change impacts modelled here, as it avoids construction of new reservoirs
that lead to resettlements, habitat destruction [31], evaporation and flow alterations [27]. Since
the biogeochemical dynamics differ among reservoirs, the potential for climate change mitiga-
tion or energy recovery has to be examined case by case [31]. Where energy technologies other
than hydropower are more likely to be phased out, different benefits are provided, which might
reduce climate change impacts even more.

While on a global level CH4 recovery does not seem to be a promising strategy considering
the relatively low efficiency of CH4 capture combined with a low contribution of CH4 to the
total carbon footprint of reservoirs, it might be suitable in some locations. We identified 187

Table 3. Global estimates of carbon emissions using the average of both models and applying correction factors without (model AC) and with allo-
cation (alloc. AC), and results from the training dataset or previous literature (prev.).

Average (kg/MWh) Median (kg/MWh) Max (kg/MWh) Total (Tg/a) Total (Tg C/a)

CO2 Prev. 85.0a 74.4b 47055b NA 82.0acd

Model AC 236 102 62733 840 229

Alloc. AC 173 55.1 62733 615 168

CH4 Prev. 3.5a 0.9b 2523b NA 7.9acd

Model AC 4.94 0.63 15072 17.5 13.2

Alloc. AC 2.95 0.43 5024 10.5 7.84

CO2e Prev. NA NA NA 288.0c NA

Model AC 404 136 501387 1436 NA

Alloc. AC 273 84.0 167129 970 NA

a Hertwich [8]
b Derived from the training dataset as provided in the supporting information of Barros et al. [7] and Hertwich [8]
c Barros et al. [7]
d The values are recalculated from the average emissions given by Hertwich [8]. The author reported 76 and 7.3 Tg C for CO2 and CH4, assuming 3288 TWh

total hydroelectricity generation in 2009 compared to 3551 TWh assumed in this study. Barros et al. [7] reported 48 and 3 Tg C.

doi:10.1371/journal.pone.0161947.t003

Table 4. Carbon footprints (kg/MWh) of the largest hydropower plant on each continent using the average of the two developedmodels and apply-
ing correction factors without (model AC) and with allocation (alloc. AC).

Plant Continent Electricity (TWh) Model AC Alloc. AC Share of CH4

CO2e CO2e

Itaipu SA 91.7 319.5 213.0 7%

Three Gorges AS 79.9 307.7 153.8 8%

Churchill Falls NA 30.8 436.4 436.4 5%

Cahora Bassa AF 15.8 724.2 241.4 54%

Sysenvatnet EU 4.8 50.0 50.0 <1%

Manapouri OC 3.3 201.3 201.3 2%

doi:10.1371/journal.pone.0161947.t004
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dams with a high CH4 recovery potential, located mainly in the United States, India andWest
Africa (Fig 1). If methane emissions from these dams would be captured with the assumed effi-
ciency of 60% [31], 19% of total methane emissions could be saved, which would reduce the
overall carbon footprint of global hydropower by 8%.

Implications
Biogenic carbon emissions from hydropower reservoirs are far higher than previously assumed.
Consequently, our results question the sustainability that is often associated with hydropower.
Although the carbon footprint of hydropower exceeds that of all other renewable energy
sources and that of fossil energy sources combined with carbon capture and storage (CSS), it is
on average about half the footprint reported for conventional fossil energy sources [32,33] (Fig
2). The emissions vary greatly among plants and the relationship with the reservoir age is not
yet well understood, as demonstrated by the contradicting reports addressed above. In addi-
tion, uncertainties of estimates remain high, as the comparison of the two approaches (per
energy unit and areal fluxes) reveals, with a production-weighted average coefficient of varia-
tion (CV) of 57%, 43% and 29% for CO2, CH4 and CO2e emissions, respectively. This high-
lights the need for a more extensive monitoring network covering diverse ecosystems, repeated
measurements over a longer observation period (at least a decade) as well as standardized mea-
surement procedures taking into account carbon burial [34], drawdown areas [10] and meth-
ane bubbles [35]. The dam construction is typically not relevant for the total carbon footprint
with emissions of ~19 CO2e/MWh [33].

Fig 2. Carbon footprints of various energy sources (based on [32] for all energy sources other than hydropower). The lower and
upper value of the dark bar for hydropower are the lower and upper quartiles for the corrected model average (Model AC). The light extensions
represent the 10 and 90% quantiles and the red diamond marks the median.

doi:10.1371/journal.pone.0161947.g002
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Besides potential environmental damages, reservoirs also have economic and social impacts.
Therefore, multiple criteria have to be examined in order to determine the optimal location for
a reservoir [30]. Climate change is, although crucial, only one aspect in such a set of criteria.
The statistical model set up in this study serves to estimate the carbon footprint of potential
new sites prior to reservoir construction. It also identifies those dams where methane emissions
are relevant and biogas electricity could be combined with hydropower. Finally, while hydro-
power has significant GHG emissions, it can also serve as highly efficient energy storage
(pumped storage power plant) of alternative energy sources, such as solar or wind power,
which can reduce overall emissions if properly combined.
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(PDF)

S2 File. Derivation of correction factors (methane ebullition and carbon burial).
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S1 Table. Carbon emissions of hydropower plants and their national and continental aver-
ages.
(XLSX)
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