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Abstract
Greenhouse gas (GHG) emissions from reservoirs havemost often been evaluated on a global extent
through areal scaling or linear-regressionmodels. Thesemodels typically rely on a limitednumber of
characteristics such as age, size, and average temperature to estimate per reservoir or arealflux. Such
approachesmay not be sufficient for describing conditions at all types of reservoirs. Emissions from
hydropower reservoirs have received increasing attention as industry andpolicymakers seek to better
understand the role of hydropower in sustainable energy solutions. In theUnited States (US),
hydropower reservoirs span awide range of climate regions and have diverse design and operational
characteristics compared to thosemost heavily represented inmodel literature (i.e., large, tropical
reservoirs). It is not clearwhether estimates based onmeasurements andmodeling of other subsets of
reservoirs describe the diverse types of hydropower reservoirs in theUS.We applied theGreenhouse
Gas fromReservoirs (G‐res) emissionsmodel to 28hydropower reservoirs located in a variety of
ecological, hydrological, and climate settings that represent the range of sizes and types of facilities
within theUShydropowerfleet. The dominant pathways for resultingGHGemissions estimates in the
case-study reservoirswere diffusion of carbondioxide, followedbymethane ebullition. Among these
case-study reservoirs, total post-impoundment arealfluxof carbon ranges from84 to 767mgCm−2d−1,
which is less variable thanwhat has been reported throughmeasurements at otherUS and global
reservoirs. The netGHG reservoir footprintwas less variable and towards the lower end of the range
observed frommodeling larger global reservoirs,with a range of 138 to 1,052 gCO2 eqm

−2 y−1, while
the global study reported a range of 115 to 145,472 gCO2 eqm

−2 y−1.High variation in emissions
normalizedwith respect to area and generation highlights the need to be cautiouswhen using area or
generation inpredicting or communicating emissions footprints for reservoirs relative to those of other
energy sources, especially given thatmany of the hydropower reservoirs in theUS servemultiple
purposes beyondpower generation.

1. Introduction

Hydropower is a critical part of the global energy system, generating over 4,370 TWhof renewable energy in
2020 (IHA 2021). In theUS, annual generation is roughly 274 TWh, representing 6%–7%of all electricity
generated, and 38%of the electricity fromUS renewables (Uria-Martinez et al 2021). Emissions from
hydropower reservoirs have received increasing attention as industry and policymakers seek to better
understand the role of hydropower in sustainable energy solutions (O’connor et al 2016). Hydropower
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reservoirs, as well as non-hydropower reservoirs and lakes, can be hotspots for carbon burial (Mendonça et al
2017) and greenhouse gas (GHG) production and emissions (Bastviken et al 2011, Rosentreter et al 2021) due to
physical and biogeochemical processes occurring in these aquatic ecosystems. Carbon dioxide (CO2) and
methane (CH4) are the twomainGHGs of interest at reservoirs. CO2 is produced viamultiple processes,
including the decomposition of organicmatter, whereas CH4 is formed through themicrobiallymediated
biogeochemical process ofmethanogenesis. Both gases are emitted from a reservoir through a variety of
pathways including diffusion, ebullition (or bubbling), and degassing fromwater that passes through turbines or
other outlet structures, thoughCH4 ebullition and degassing are rarelymeasured ormodelled.

UnderstandingGHG emissions in individual reservoirs is a significant scientific challenge. Recent studies
highlight challenges involved in carbon andGHGaccounting at reservoirs (Prairie et al 2018), and particularly at
hydropower reservoirs (Jager et al 2022). These challenges include variability in processes and pathways forGHG
emissionswhich can change over space and time. Additionally,many factors are highly dependent onmultiple
biogeochemical processes in the reservoir, and emissions unrelated to the impoundment or operation of the
reservoir (i.e., anthropogenic processes adding carbon to the system) can be difficult to estimate, but are
important to be accounted for (Lovelock et al 2019).

Onemajor obstacle to accurate quantification ofGHGemissions is the difficulty of capturing temporal
variation (Demarty et al 2011, Beaulieu et al 2014) and spatial heterogeneity bothwithin (Beaulieu,McManus
andNietch 2016) and across water bodies (Deemer et al 2016, DelSontro, Beaulieu andDowning 2018). Synoptic
sampling can result in underestimation, not accounting for variability in CH4 ebullition can result in
underestimation total emissions by 50% (Deemer et al 2016) failure to capture extreme values (Prairie et al
2021). Despite inherent limitations of empiricalmeasurements, they have often been used to estimateGHG
emissions for other reservoirs by assumingfluxes scale solely based on area (Ehhalt 1974, St. Louis et al 2000,
Cole et al 2007, Tranvik et al 2009, Rosentreter et al 2021). Some recent studies have extrapolated point
measurements to reservoirs based on relationships with covariates such as productivity and lake size (DelSontro,
Beaulieu andDowning 2018). Alternatively, regression techniques for predicting emissions have used reservoir-
specific characteristics such as reservoirmorphology, catchment land use (Beaulieu et al 2020), reservoir age
(Barros et al 2011), and temperature (Scherer and Pfister 2016). However, thesemodels are often limited to
characteristics that are readily available fromdamor reservoir inventories andmay not representmany of the
complexities of physical and biogeochemical processes contributing toGHGproduction and emission. Some
relationships observed in smaller datasets have not persistedwhenmore data were collected and analyzed. For
example, as the sample of 85 reservoirs fromBarros et al (2011)was expanded to 267 reservoirs, mean reservoir
depthwas no longer a strong predictor of CH4 flux (Deemer et al 2016). Beaulieu et al (2020) highlight that
expanded sampling is needed to validate larger-scale extrapolation of these types ofmodels to unsampled
reservoirs.

On the other hand, physicalmodels such asCE-QUAL-W2 (Wells 2021) and LAKE2.0 (Stepanenko et al
2016) represent hydrodynamic and biogeochemical processes well and have been used tomodel reservoir GHG
emissions (Berger et al 2014, Guseva et al 2020), but have their own drawbacks. These include data-intensive
input requirements (e.g., detailed bathymetry, physicochemical characteristics of thewater column and
sediments) and simplified representations of lake dynamics (e.g., only simulating 1 or 2 dimensions). This is
particularly limitingwhen assessing emissions across bodies of water that are remote, incompletelymapped, or
irregularly sampled and therefore cannot be properly calibrated or validatedwith physicalmodels. Further,
incomplete representation of processes bywidely used lake and reservoirmodels necessitates coupling/
coordination of differentmodels (e.g., degassing is often not included in common lake or reservoirmodels).

Large-scale applications ofmodels and aerial scaling ofmeasurements to national or global estimates have
resulted in different estimates for totalflux and have been used to describe general patterns influx and emissions
across different pathways. Because of the diversity of types of hydropower reservoirs (sizes, operations,
condition, watershed land use and hydroclimate) in theUS, it is unclear if these coarse estimates and patterns in
pathways describe the range of conditions that are observed in theUS hydropower fleet.

In this study, we applied theGreenhouseGas fromReservoirs (G‐res) tool (Prairie et al 2021), which
estimates pathway-specificfluxes of CO2 (diffusive) andCH4 (diffusive, ebullitive, and degassing) at the
reservoir level, to a diverse collection of 28US hydropower reservoirs. Theweb-basedG-res tool is based on a set
of equations derived from an inventory of reservoir emissionmeasurements. In addition to themore explicit
representation of different pathways thanwhat has typically beenmodelled in the past, themodels inG-res also
incorporate a broader suite of explanatory variables to describe catchment and reservoir characteristics relevant
to the production and emission ofGHGs. G-res is used to estimate per-reservoir and arealflux of CO2 andCH4.
First, we evaluated key geomorphological andwater quality characteristics of these 28 reservoirs to describe how
this sample of reservoirs fits within the broader context of the larger US hydropower fleet and other reservoirs
assessed in global inventories of GHGgases. Next, we evaluatedmodelledGHGemissions by pathway for the
selected reservoirs, and compared these to empiricalmeasurements and global G-resmodel estimates. This
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analysis highlightedwhich emission pathwaysweremost dominant and described the range ofGHG fluxes
across a range of hydropower systems. Overall, ourmodelling analysis ofUS hydropower reservoirs results in a
detailed understanding of the characteristics and conditions present at these reservoirs that driveGHG
emissions. This information provides valuable insight to thosewhomanage these systems and improves our
understanding of the contribution ofUS hydropower reservoirs to global GHGand carbon accounting.

2.Data andmethods

2.1. Site selection
Ourfirst goal was to identify a representative set of reservoirs spanning the range of environments, locations, and
types of conventional hydropower systems in the conterminousUS (CONUS).We focused on reservoirs that
were not immediately downstreamof other reservoirs (i.e., cascading systems), thoughwe did not strictly limit
selection to headwater dams, since these are a relatively small proportion of hydropower facilities. Cascading
systemswere not included because theG-resmodel does not explicitly account for reductions or inputs toGHG
emission processes thatmight be occurring in upstream reservoirs (Prairie et al 2017). From this set, we chose
reservoirs fromdifferent ecoregions, prioritizing thosewith documentedGHG andwater quality
measurements.

Unique hydropower reservoirs with operational power plants and inventoried reservoirs (n= 1,003)were
identified from theHydropower Infrastructure—LAkes, Reservoirs, RIvers database (HILARRI v1.1) (Hansen
andMatson 2021) as candidates formodel application. An additional 31 existing inventoried reservoirs in the
pipeline for hydropower development (Johnson andUria-Martinez 2021)were considered.

Candidate reservoirs from the initial screeningwere grouped by ecoregion, as defined by theUS
Environmental ProtectionAgency (EPA,Omernik andGriffith 2014).We assumed that the properties that
distinguish these regions (i.e., type, quality, and quantity of environmental resources) are relevant for reservoir
and catchment processes.We then targeted reservoirs included in one ormore of the 2007, 2012, or 2017 EPA
National Lake Assessments (NLA,USEPA2016) or could bematched to the existingGHGmeasurement
inventory byDeemer et al (2016). This was done to exploit existing information forG-resmodel inputs (e.g., the
NLA includes reservoir characteristics andwater quality information) and for comparison betweenmodelled
andmeasured results. At least one reservoir was selected from each ecoregion,most regions included at least two
reservoirs and generally, ecoregions with higher abundances of hydropower reservoirs had proporitionally
higher representation. A total of 28 reservoirs were selected based on the search criteria and referred to hereafter
as ‘case-study reservoirs’ (figure 1). Six sites did not havewater quality orGHG records from theNLAorGHG
measurement inventory, butwere still included for better representation across the geographic extent of the
CONUS and the variety of ecoregions. Finally, sites were chosen to represent a spectrumof size (surface area and
storage volume), age, and purposes. Characteristics of the case-study reservoirs were obtained from the dam and
reservoir inventories. The process for selection and data sources is summarized infigure S1.

The sample of case-study reservoirs ranged in surface area from0.12 to 457 km2 (median= 19.7 km2) and in
storage from0.1 to 8,042× 106m3. The sample was skewed towards larger reservoirs, with 20 of the 28 total
reservoirs exceeding the 75th percentile of all US hydropower dams linked to operational power plants and
inventoried reservoirs for both surface area and storage (figures S2A, B). The range of age in case-study reservoirs
was 28–110 years, spanning the 1st to the 75th percentile ofUS hydropower reservoirs (figure S2C). Case-study
reservoirs were younger, with amedian age of 63 years compared to 91 years for otherUS hydropower
reservoirs. 86%of the case-study reservoirs servemore than one purpose besides hydropower compared to 72%
of theUShydropower dams that also support other purposes (figure S2D).

The case-study reservoirs spanned a similar range inwater quality characteristics as observed in the dataset of
global hydropower reservoirs (Deemer et al 2016) and the dataset of US hydropower reservoirs in theNLA
(figure S3). For chlorophyll-a (figure S3A), total phosphorus (figure S3B), and total nitrogen concentrations
(figure S3C), the case-study reservoirs spanned from the lowest reported value in theNLAmeasurements
through the 75th percentile, 88th percentile, and 93rd percentile, respectively. The three reservoirs with the
lowest total phosphorus concentrations were included in the case-study, one of which also had the lowest
chlorophyll-a concentration (FrenchMeadows, CA00856). A different case-study reservoir had the lowest total
nitrogen concentration (Upper BakerWA00173). As a result of this slight skew toward lower chlorophyll-a and
nutrient concentrations, both the case-study reservoirs andUS hydropower reservoirs underrepresent
eutrophic systems compared to global reservoirs (figures S3D, E).

2.2. Inputs, assumptions, and application of theG-resmodel
G-res v.2.1 (Prairie et al 2021)was used to predict GHGemissions for the 28 case-study reservoirs.While
detailed descriptions of the tool and validation of its underlyingmodels are provided by the tool developers, we
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provide an overview of the key inputs and structure of the tool. Inputs to theG-resmodel consist of either
characteristics of the catchment or the reservoir (physical and operational). Themodelled system is not
dynamic, so emissions are not simulated over a series of time steps. Instead, themodel uses empiricalmodels to
calculate emissions on an annualized basis (e.g., g CO2 y

−1). Inputs to themodel are therefore static and assumed
to be representative of reservoir conditions from impoundment to end-of-assumed-life (100 years). Inmany
cases, inputs were derived from remotely sensed ormodelled data (detailed in table 1) and required processing
usingGIS software or cloud-based processing inGoogle Earth Engine.

Specific inputs includewater treatment (i.e., whether therewere primary, secondary, or tertiary treatment
facilities in the catchment), parameters describing the generalmorphology (volume, surface area,maximum
depth) of the reservoir, and operations (intake depth and annual releases) at the dam. Several parameters (mean
depth, thermocline depth, phosphorus loading, etc)were estimated using default G-res estimationmethods;
these default valueswere overridden if data were available through publicly available documents such as license
documents, fishing depth reports, or published studies reportingwater quality conditions (see
Supplemental Data).

In this study, estimated emissionswere based on reservoir characteristics only; life-cycle emissions
attributed tomaterials and construction of the damwere not evaluated. Reservoir emissionswere estimated for
multiple pathways (diffusion, ebullition, and degassing for CH4 and diffusion for CO2) and reported as net
emissions (i.e., pre-impoundment emissions and unrelated anthropogenic sources of emissions subtracted from
post-impoundment emissions). Pre-impoundment emissions are based on factors related to land cover and soil
types within a buffer around the perimeter of the reservoir. Conditions in the buffer were assumed to be
representative of those that existed prior to impoundment of the river and filling of the reservoir. Emissions
attributed to unrelated anthropogenic sources are associatedwith the input of phosphorus to the reservoir from
human-related activities in the catchment (i.e., sewage and human-related land use) (Prairie et al 2017). For
convenience in comparing emissions across the different pathways andGHGs, footprints were calculated as CO2

equivalents (CO2eq) using the default G-res 100-year horizon global warming potential factor (GWP100), where
CH4 ismultiplied by 34, themost conservative GWP100 reported by the IPCCFifth Assessment Report (Myhre
et al 2013). GHG footprints (overall and by individual pathway)were also translated to ameasure commonly

Figure 1. Locations of hydropower reservoirs and those selected as case-studies forG-resmodel application in this study. Identifiers
shown for reservoirs correspondwith those used in theNational Inventory ofDams (USACE 2019).
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reported in sampling literature, areal dailyflux of carbon (mgCm−2 d−1), bymultiplying theCO2eq by 0.27
(fraction of the atomicweight of CO2 attributed to carbon) and thenmultiplying by the fraction of total reservoir
emissions for each pathway.

We comparedG-resmodelled results with prior empiricalmeasurements reported byDeemer et al
(2016). These describe areal emissions of CO2 via diffusion, andCH4 via ebullition and diffusion from
167 hydropower reservoirs around the world. 18%of these reservoirs are located in theUS, and eight of
the 28 case-study reservoirs have empiricalmeasurements of either CO2 or CH4 emissions reported in this
dataset. This dataset also includes water qualitymeasures (reservoir-average chlorophyll-a, total phosphorus,
and trophic status) for a subset of these hydropower reservoirs. Note that areal GHG flux for each of the
pathways andwater qualitymeasures are not available at all reservoirs in theDeemer et al (2016) dataset.
Water quality information (reservoir-average chlorophyll-a, total phosphorus, total nitrogen, and benthic
condition)was also obtained from the 2012NLA (USEPA 2016) for 16 of the 28 reservoirs in the case-study
analysis.

Finally, to evaluate consistency between estimates for the diverse subset of case-study reservoirs and
estimates that have been reported for a set of larger reservoirs, we compared case-study results with emission
estimates that weremodelled usingG-res at a coarser resolution (Harrison et al 2021). These are summarized as
1-degree gridded estimates of total GHGemissions across all emission pathways over theCONUS. These
gridded estimates were available for all 28 case-study reservoirs using the grid cell where the dam is located or the
nearest neighboring grid cell.

3. Results

The 28 case-study reservoirs had high variability in net annual GHGemissions (figure 2). Values spanned from
19 to 201,528Mgof CO2eq y

−1 equivalents, with amedian emission rate of 5,804MgCO2eq y
−1. Variation in

the share of total emissions attributed to each pathwaywas considerable across the case-study reservoirs. In 18 of
the 28 reservoirs, CO2 diffusionwas the dominant emission pathway; in 15 reservoirs, this pathway accounted
formore than 50%of the total emissions. CH4 ebullitionwas themost dominant pathway in 9 of the 28
reservoirs and in 5 reservoirs, it accounted formore than 50%of total emissions. Predicted CH4 diffusive and

Table 1.Catchment and reservoir attributes and climate drivers used as inputs to theG-resmodel.

Description (units) Resolution Source Processing

Catchment/reservoir buffer
parameters

Area (km2) 10 m USGSNational ElevationDataset UsedArcGIS 10.7 to fill depressions, deter-

mineflowdirection, accumulation, and

delineate catchment boundary

Land cover 30 m 2016National LandCoverDatabase

(Dewitz 2019)
Calculated area as a percentage of catch-

ment and reservoir buffer area

Soil carbon content

(kgCm−2)
250 m SoilGrids Global Gridded Soil

(Hengl et al 2017) Information

Calculatedmean soil carbon content over

the catchment and reservoir buffer area

Mean annual runoff in

catchment (mmy−1)
4 km TerraClimateMonthlyWater Balance

for Global Terrestrial Surfaces

(Abatzoglou et al 2018)

Aggregated themonthlymean runoff from

1990–2019 on an annual basis and calcu-

lated the annual average over the catch-

ment area

Population in catchment 1 km 2020Gridded Population of the

World v4.11 (CIESINCenter for

International Earth Science

InformationNetwork 2018)

Multiplied average density by the catch-

ment area

Reservoir parameters

Average air temperature (°C) 1 km Daymet v4Daily SurfaceWeather and

Climatological Summaries

Calculated averagemonthly temperature

over 1990–2019 fromdaily temperature

over the reservoir area

Wind speed at 10 m (ms−1) 4 km Gridmet: University of IdahoGridded

SurfaceMeteorological Dataset

(Abatzoglou 2013)

Calculated average annual wind speed over

the reservoir area from1990–2019 daily

wind speed

GlobalHorizontal

Radiation (kWhm−2 d−1)
0.5

degree

(∼55 km)

NASA SurfaceMeteorology and Solar

Energy Release 6.0

(Stackhouse et al 2015)

Calculated average daily radiation over the

reservoir area according toG-res technical

guidance (Prairie et al 2017) for 1983–2005
based on latitude
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degassing emissions generally comprised small portions of total emissions at the case-study reservoirs.
Degassing accounted for<10%of total emissions for all but four of the reservoirs, despitemany containing
intakes located below the thermocline depth (where oxygen-poor conditions aremore likely to facilitate
anaerobicmethanogenesis and prevent oxidization of CH4 toCO2). The reservoirs with the greatest overall areal
fluxes, were largely dominated byCH4 ebullition, with CH4 degassing comprising a relatively small share of total
emissions (maximumof 24%of total CO2eq).

A comparison of areal emissions and net generation footprints (total emissions normalized to
annual generation)with respect to reservoir size (volume and surface area) highlighted several complexities
(figure 3). For example,many of the smaller reservoirs had relatively small generation footprints but some of
the largest net areal fluxes (i.e., point labeled C in figure 3). Additionally, the largest net generation footprints
were estimated at locations on different ends of the reservoir size spectrum (i.e., points labeled A and B in
figure 3). Point A (MA00942) is a smallmill structure that was retrofit nearly 30 years after it was built to
operate withminimal storage or additional alteration of the non-hydropower releases, while Point B
(TX00011) is amajor water supply and flood control reservoir. In both cases, hydropower generation is
heavily constrained by the other services provided by the dam and the corresponding storage and release
rules. On the other hand, Point C (OR00559)was built primarily for hydropower, and generatesmore
energy than other reservoirs even though it is significantly smaller in surface area and volume. This reservoir
had one of the smallest generation footprints whereas its areal footprint was the largest of the case-study
reservoirs.

Such complex relationships underscore the necessity of considering the range of generation scenarios and
constraints that likely exist atmulti-purpose reservoirs, particularly where the primary purpose is not
hydropower. This is relevant given that commonmodelling approaches in the literature that have at times used
area, generation, or the area to generation ratio as a predictor forGHGemissions (e.g., Scherer and Pfister 2016).
For the case-study reservoirs that are included inDeemer et al (2016), modelled post-impoundment areal
footprints were positively correlatedwithmeasurements reported for all pathways except CO2 diffusion
(figure 4). Four of the reservoirs reported negative CO2 diffusion footprints (reflecting uptake of CO2) but the
G-resmodel estimated positive emissions.

Total areal carbon flux for the case-study reservoirs was highly variable (84 to 767 mgCm−2d−1,
median= 275 mgCm−2d−1). Comparisons to totalmeasured arealfluxes reported inDeemer et al (2016) are
imperfect becausemeasurements often do not include all pathways. However, estimated arealfluxes for the

Figure 2.Distribution andmagnitude ofGHG emissions by reservoir and by pathway.High variability is observed on a per-reservoir
basis, as well as across the different emissions pathways. Thewidth of each plot is scaled to total emissionwhile colors represent the
percentage of the total reservoir GHGemissions attributed to each pathway.Note the logarithmic scale on the x-axes.
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case-studies were on the lower end of the spectrumofmeasured areal fluxes, which range from−321 to 2150 mg
Cm−2d−1 (median= 272 mgCm−2d−1) forUS reservoirs and−355 to 2973 mgCm−2d−1 (median= 283 mg
Cm−2d−1) for global reservoirs.

The areal post-impoundment GHG emission footprints of these case-study reservoirs were also
positively correlated (Pearson r= 0.81, p< 0.001)with those reported byHarrison et al (2021), though
emission estimates from the case-study reservoirs were on average∼1.6 times lower than the gridded
estimates (figure 5). Areal fluxes in the case-study reservoirs were less variable and generally lower than
those in the global study, ranging from 138 to 1,052 gCO2eqm

−2 y−1, while the global study reported a
range of 115 to 145,472 gCO2eqm

−2 y−1 (Harrison et al 2021). Differences in the areal emission footprints
of methane (US case-study versus US and non-US reservoirs modelled in Harrison et al 2021)were
significant (p< 0.001); differences in CO2were not statistically significant (p= 0.07). These differences are
summarized in table S1.

Figure 3.Comparison betweenGHGemission footprints from case-study hydropower reservoirs, normalizedwith respect to energy
generation and surface area.Major differences in footprints with respect to reservoir size (surface area and volume) demonstrate
inconsistencies when using size or energy generation as a predictor ofGHG emissions. The three labelled points highlight these
discrepancies: Point A (MA00942), Point B (TX00011), and Point C (OR00559), which vary greatly in size, purpose, and emission
footprints.

Figure 4.Comparison of G-resmodelled areal GHG emissions againstmeasurements reported inDeemer et al (2016) byGHG
emission pathway, where datawere available. Note log10 transformation of both axes. The dashed line is the 1:1 line. Estimates from
theG-resmodel are generally well correlated (with the exception of CO2 diffusion) and aremuch higher for all pathways than those
measured in thefield.
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4.Discussion

4.1. Comparison to othermodelling andmeasurement studies
The dominant emission pathways observed in the 28 case-study reservoirs were generally in linewithHarrison
et al (2021). In both studies, CO2 diffusion andCH4 ebullitionwere the dominant emissions pathways for
hydropower reservoirs across CONUS. Therewas a difference, however, in the pattern observed at the reservoirs
with the greatest total arealfluxes.While case-study reservoirs in theUSwith the highest arealfluxes were largely
dominated by ebullitive CH4 emissions and degassing generallymade up a smaller share of the total emissions,
Harrison et al found degassing to be the dominant pathway for those reservoirs with the largest arealfluxes.

Themedian areal carbon flux for case-study reservoirs was consistent withmedian reported values of
mesurements for otherUS reservoirs and global reservoirs. The areal carbon flux at case-study reservoirs nearly
spanned an order ofmagnitude, butwere still concentrated towards the lower range of otherUS and global
reservoirs, despite including all pathways. Negative areal carbon fluxwere sometimes reported inUS and global
reservoirs in literature; however, G-resmodelled fluxeswere never found to be negative. This highlights the
limited ability of theG-resmodel to represent negative post-impoundment fluxes.However, it is important to
note that synopticmeasurements have their own limitations; a negative fluxmeasured at a single point in space
and timemay not represent overall conditions in the reservoir.

Gridded estimates of total emissionswere consistently greater than those calculated in this study for
individual reservoirs. Some differences were expected because the gridded estimates are based on an aggregation
and interpolation of reservoirs, so the gridded valuemay reflect conditions ofmultiple reservoirs. Additionally,
the characteristics of the reservoirs used to produce the gridded estimates differ from those used in this study.
For example, the reservoirs used in the global studywere generally larger (minimumof 1 km2) and include both
hydropower and non-hydropower reservoirs. These differences highlight a limitation of the interpolated values
from the gridded dataset; theymay represent spatial patterns well, but theymay not accurately reflect conditions
when downscaled to individual reservoirs.

4.2. Implications forUS and global hydropower reservoirs
There are several possible issues with drawing conclusions about regional patterns or the entire US hydropower
fleet based on the limited sample of the case-study reservoirs. For example, the underrepresentation of eutrophic
systems in the case-study reservoirs compared to global reservoirs could lead to underestimation of emissions.
Additionally, case-study reservoirs were younger and larger on average than the broader set ofUS hydropower
reservoirs.Many of the limitations associatedwith upscaling or extrapolating the case studymodelled emission
estimates also apply to upscaling of empirical GHGmeasurements. To address this, onemight develop post-
stratificationmethods to assign sampling weights based on reservoir attributes towhichG-res is known to be
sensitive.

Another important aspect to consider for the largerfleet ofUS hydropower reservoirs is expected change in
catchment development and climate. For example, population increases, urbanization, and anthropogenic

Figure 5.G-res GHGemissions from28 case-study reservoirs compared to predictedGHGemissions from gridded data from
Harrison et al (2021). Point size represents surface area. The solid line is the linear trend line and the dashed line is the 1:1 line. Both
axes are log10 transformed. Three points indicated A, B, andC are the same as infigure 3. Gridded predictions overestimatedGHG
emissions from the case-study reservoirs in nearly all instances.
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catchment activities are all tied closely to reservoir processes throughwater availability, nutrient and carbon
inputs to reservoirs, and changes in reservoirmanagement practices (Ho et al 2017). These factors that could
affect carbon cycling and emissions in reservoirs could be exacerbated by compounding effects of changing
climate. According to downscaled projections of temperature (Thrasher et al 2013), average annual
temperatures will increase at all 28 locations by the end of century under representative concentration pathways
4.5, 6.0, and 8.5which can impact water availability and catchment vegetation. Additionally, climate is expected
to becomewarmer and drier inmany parts of theUS, though increased precipitation is expected in the
northeastern to uppermidwesternUS (Beck et al 2018).Many hydropower reservoirs are located in regions
where the climate class is expected to change by the end of the century (Hansen, Jackson andDeSomber 2021);
potential effects of these changes will need to be considered by reservoir operators and the hydropower
community throughout the country as they seek to further understand andmitigate emissions.

Impacts of changing land use, development, and climate can be explored by comparing scenarios or time
periods. However, a significant limitation for a non-dynamic statisticalmodelling approach likeG-res is the
inability to capture seasonal or year-to-year variation. In reality, variation can impact GHGproduction and
emissions. Climate and environmental changes resulting inwarming could affect a variety of lake processes
including thermal stratification, which is a critical control on carbon processing, butwhich theG-resmodel does
not capture in a dynamic fashion. Internal carbon processes and feedbacks can be complex during stratified
periods, which have become longer (Woolway et al 2021) and stronger (Kraemer et al 2015, Pilla et al 2020) in
lakes and reservoirs around theworld (Sobek et al 2009, Carey et al 2018). Longer and stronger stratification can
lead to longer periods of lowoxygen at depth (Fang and Stefan 2009, Foley et al 2012, Rösner,Müller-Navarra
andZorita 2012, Knoll et al 2018) that promotes CH4 production. Additionally, both the production and
subsequent decomposition of algae is exacerbated bywarming (Visser et al 2016). This response also contributes
to lowoxygen in deepwaters that promotes CH4production and has been highlighted as an important driver of
CH4 emissions at a global scale (Sepulveda-Jauregui et al 2018, Beaulieu, DelSontro andDowning 2019).While
reduced oxygen in deep regions of lakes and reservoirs is a pervasive pattern globally, there is high variability in
both the rate and drivers of change (Jane et al 2021). This variability over space and through timemakes it
challenging to quantify GHGemissions within reservoirs. Use of physically-basedmodels or process
representation in statisticalmodels will enable better understanding of emissions over time and across different
bodies of water.

In addition to process variability that is not yet captured by theG-resmodel, theremay also be uncertainties
in key characteristics that lead to uncertainty inmodelled emissions. For example, reported reservoir volumes or
depthsmay differ fromone reservoir or dam inventory to another, depending on the resolution ormethod used
to determine the characteristic. A formal sensitivity analysis that considers uncertainty and quality assessments
of the inputs is needed to determine how these uncertainties impactmodelled results.

5. Conclusion

Comparisons between case-studymodelledGHGemissions andmeasurements ormodelled emissions from
other subsets of reservoirs highlight where there is consistency in observed patterns orwhere theremay be
limitations in describing individual reservoirs. Trends inGHGemissions pathways at the case study hydropower
reservoirs are generally consistent with those observed across global scales with CO2 diffusive fluxes dominating
the overall GHG footprint for themajority of the reservoirs. Comparisons also provide context for howUS
hydropower against to other subsets of reservoirs.While therewas general agreement between estimates and
measurements formost pathways, therewere several instances where possible carbon sinks were notwell
represented by theG-resmodel. Additionally, while estimates of net footprints were highly correlatedwith those
extrapolated from estimates at larger reservoirsmodeled in other studies, theywere consistently lower across the
smaller and diversemulti-purpose case-study reservoirs.

While degassing caused by deepwater intakeswas not the dominant pathway for emissions at any of the
case-study reservoirs (unlike the largest emitters in the global G-res study), it did account for a substantial
portion of emissions at several of the reservoirs and remains an important opportunity for reducingGHG
emissions. Limitations in representing intake depth dynamically (due to static representation of intake depth in
themodel)may be overcomewith additional data collection and scenario-basedmodeling to evaluate design
and operational strategies. Additionally, even in empirical GHGmeasurements, the degassing pathway is very
understudied compared to other emissions pathways. Greater focus onmeasuring this pathwaymay reduce the
uncertainties in futuremodelling efforts. Understanding thesemechanismswill require extending analyses by
includingmore detailed representations of catchment hydrology and human/reservoirmanagement interface
and considering policies, water rights,multi-purpose uses of thewater, and not solely water availability or
operational strategies.
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GHGemissions fromwaterbodies are a critical part of the global carbon equation. Accurate representations
ofGHG footprints (and their contributing factors) at hydropower reservoirs are especially important to enable
evaluation of environmental tradeoffs during the transition away from fossil fuel and ensure emissions
reduction targets aremet. Especially when thesewaterbodies are oftenmanaged for various purposes,more
detailed and accurate reservoir GHGemissions footprints can lead to better identification of wheremonitoring
andmitigation resources could be allocated, andwhich strategies could be employed to reduce reservoir
emissions.
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