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Abstract

Greenhouse gas (GHG) emissions from reservoirs have most often been evaluated on a global extent
through areal scaling or linear-regression models. These models typically rely on a limited number of
characteristics such as age, size, and average temperature to estimate per reservoir or areal flux. Such
approaches may not be sufficient for describing conditions at all types of reservoirs. Emissions from
hydropower reservoirs have received increasing attention as industry and policy makers seek to better
understand the role of hydropower in sustainable energy solutions. In the United States (US),
hydropower reservoirs span a wide range of climate regions and have diverse design and operational
characteristics compared to those most heavily represented in model literature (i.e., large, tropical
reservoirs). Itis not clear whether estimates based on measurements and modeling of other subsets of
reservoirs describe the diverse types of hydropower reservoirs in the US. We applied the Greenhouse
Gas from Reservoirs (G-res) emissions model to 28 hydropower reservoirs located in a variety of
ecological, hydrological, and climate settings that represent the range of sizes and types of facilities
within the US hydropower fleet. The dominant pathways for resulting GHG emissions estimates in the
case-study reservoirs were diffusion of carbon dioxide, followed by methane ebullition. Among these
case-study reservoirs, total post-impoundment areal flux of carbon ranges from 84 to 767 mgCm >d~',
which is less variable than what has been reported through measurements at other US and global
reservoirs. The net GHG reservoir footprint was less variable and towards the lower end of the range
observed from modeling larger global reservoirs, with a range of 138 to 1,052 g CO,eqm >y ', while
the global study reported a range of 115 to 145,472 g CO, eqm >y~ '. High variation in emissions
normalized with respect to area and generation highlights the need to be cautious when using area or
generation in predicting or communicating emissions footprints for reservoirs relative to those of other
energy sources, especially given that many of the hydropower reservoirs in the US serve multiple
purposes beyond power generation.

1. Introduction

Hydropower is a critical part of the global energy system, generating over 4,370 TWh of renewable energy in
2020 (IHA 2021). In the US, annual generation is roughly 274 TWh, representing 6%—7% of all electricity
generated, and 38% of the electricity from US renewables (Uria-Martinez et al 2021). Emissions from
hydropower reservoirs have received increasing attention as industry and policy makers seek to better
understand the role of hydropower in sustainable energy solutions (O’connor et al 2016). Hydropower
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reservoirs, as well as non-hydropower reservoirs and lakes, can be hotspots for carbon burial (Mendonga et al
2017) and greenhouse gas (GHG) production and emissions (Bastviken et al 2011, Rosentreter et al 2021) due to
physical and biogeochemical processes occurring in these aquatic ecosystems. Carbon dioxide (CO,) and
methane (CH,) are the two main GHGs of interest at reservoirs. CO, is produced via multiple processes,
including the decomposition of organic matter, whereas CH, is formed through the microbially mediated
biogeochemical process of methanogenesis. Both gases are emitted from a reservoir through a variety of
pathways including diffusion, ebullition (or bubbling), and degassing from water that passes through turbines or
other outlet structures, though CH, ebullition and degassing are rarely measured or modelled.

Understanding GHG emissions in individual reservoirs is a significant scientific challenge. Recent studies
highlight challenges involved in carbon and GHG accounting at reservoirs (Prairie et al 2018), and particularly at
hydropower reservoirs (Jager et al 2022). These challenges include variability in processes and pathways for GHG
emissions which can change over space and time. Additionally, many factors are highly dependent on multiple
biogeochemical processes in the reservoir, and emissions unrelated to the impoundment or operation of the
reservoir (i.e., anthropogenic processes adding carbon to the system) can be difficult to estimate, but are
important to be accounted for (Lovelock et al 2019).

One major obstacle to accurate quantification of GHG emissions is the difficulty of capturing temporal
variation (Demarty eral 2011, Beaulieu et al 2014) and spatial heterogeneity both within (Beaulieu, McManus
and Nietch 2016) and across water bodies (Deemer et al 2016, DelSontro, Beaulieu and Downing 2018). Synoptic
sampling can result in underestimation, not accounting for variability in CH, ebullition can result in
underestimation total emissions by 50% (Deemer et al 2016) failure to capture extreme values (Prairie et al
2021). Despite inherent limitations of empirical measurements, they have often been used to estimate GHG
emissions for other reservoirs by assuming fluxes scale solely based on area (Ehhalt 1974, St. Louis et al 2000,
Cole etal 2007, Tranvik et al 2009, Rosentreter ef al 2021). Some recent studies have extrapolated point
measurements to reservoirs based on relationships with covariates such as productivity and lake size (DelSontro,
Beaulieu and Downing 2018). Alternatively, regression techniques for predicting emissions have used reservoir-
specific characteristics such as reservoir morphology, catchment land use (Beaulieu et al 2020), reservoir age
(Barros etal 2011), and temperature (Scherer and Pfister 2016). However, these models are often limited to
characteristics that are readily available from dam or reservoir inventories and may not represent many of the
complexities of physical and biogeochemical processes contributing to GHG production and emission. Some
relationships observed in smaller datasets have not persisted when more data were collected and analyzed. For
example, as the sample of 85 reservoirs from Barros et al (2011) was expanded to 267 reservoirs, mean reservoir
depth was no longer a strong predictor of CH, flux (Deemer et al 2016). Beaulieu et al (2020) highlight that
expanded sampling is needed to validate larger-scale extrapolation of these types of models to unsampled
reservoirs.

On the other hand, physical models such as CE-QUAL-W2 (Wells 2021) and LAKE2.0 (Stepanenko et al
2016) represent hydrodynamic and biogeochemical processes well and have been used to model reservoir GHG
emissions (Berger et al 2014, Guseva et al 2020), but have their own drawbacks. These include data-intensive
input requirements (e.g., detailed bathymetry, physicochemical characteristics of the water column and
sediments) and simplified representations of lake dynamics (e.g., only simulating 1 or 2 dimensions). This is
particularly limiting when assessing emissions across bodies of water that are remote, incompletely mapped, or
irregularly sampled and therefore cannot be properly calibrated or validated with physical models. Further,
incomplete representation of processes by widely used lake and reservoir models necessitates coupling/
coordination of different models (e.g., degassing is often not included in common lake or reservoir models).

Large-scale applications of models and aerial scaling of measurements to national or global estimates have
resulted in different estimates for total flux and have been used to describe general patterns in flux and emissions
across different pathways. Because of the diversity of types of hydropower reservoirs (sizes, operations,
condition, watershed land use and hydroclimate) in the US, it is unclear if these coarse estimates and patterns in
pathways describe the range of conditions that are observed in the US hydropower fleet.

In this study, we applied the Greenhouse Gas from Reservoirs (G-res) tool (Prairie et al 2021), which
estimates pathway-specific fluxes of CO, (diffusive) and CH, (diffusive, ebullitive, and degassing) at the
reservoir level, to a diverse collection of 28 US hydropower reservoirs. The web-based G-res tool is based on a set
of equations derived from an inventory of reservoir emission measurements. In addition to the more explicit
representation of different pathways than what has typically been modelled in the past, the models in G-res also
incorporate a broader suite of explanatory variables to describe catchment and reservoir characteristics relevant
to the production and emission of GHGs. G-res is used to estimate per-reservoir and areal flux of CO, and CH,.
First, we evaluated key geomorphological and water quality characteristics of these 28 reservoirs to describe how
this sample of reservoirs fits within the broader context of the larger US hydropower fleet and other reservoirs
assessed in global inventories of GHG gases. Next, we evaluated modelled GHG emissions by pathway for the
selected reservoirs, and compared these to empirical measurements and global G-res model estimates. This
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analysis highlighted which emission pathways were most dominant and described the range of GHG fluxes
across a range of hydropower systems. Overall, our modelling analysis of US hydropower reservoirs results in a
detailed understanding of the characteristics and conditions present at these reservoirs that drive GHG
emissions. This information provides valuable insight to those who manage these systems and improves our
understanding of the contribution of US hydropower reservoirs to global GHG and carbon accounting.

2.Data and methods

2.1. Site selection

Our first goal was to identify a representative set of reservoirs spanning the range of environments, locations, and
types of conventional hydropower systems in the conterminous US (CONUS). We focused on reservoirs that
were not immediately downstream of other reservoirs (i.e., cascading systems), though we did not strictly limit
selection to headwater dams, since these are a relatively small proportion of hydropower facilities. Cascading
systems were not included because the G-res model does not explicitly account for reductions or inputs to GHG
emission processes that might be occurring in upstream reservoirs (Prairie et al 2017). From this set, we chose
reservoirs from different ecoregions, prioritizing those with documented GHG and water quality
measurements.

Unique hydropower reservoirs with operational power plants and inventoried reservoirs (n = 1,003) were
identified from the Hydropower Infrastructure—LAkes, Reservoirs, RIvers database (HILARRI v1.1) (Hansen
and Matson 2021) as candidates for model application. An additional 31 existing inventoried reservoirs in the
pipeline for hydropower development (Johnson and Uria-Martinez 2021) were considered.

Candidate reservoirs from the initial screening were grouped by ecoregion, as defined by the US
Environmental Protection Agency (EPA, Omernik and Griffith 2014). We assumed that the properties that
distinguish these regions (i.e., type, quality, and quantity of environmental resources) are relevant for reservoir
and catchment processes. We then targeted reservoirs included in one or more of the 2007, 2012, or 2017 EPA
National Lake Assessments (NLA, USEPA 2016) or could be matched to the existing GHG measurement
inventory by Deemer et al (2016). This was done to exploit existing information for G-res model inputs (e.g., the
NLA includes reservoir characteristics and water quality information) and for comparison between modelled
and measured results. At least one reservoir was selected from each ecoregion, most regions included at least two
reservoirs and generally, ecoregions with higher abundances of hydropower reservoirs had proporitionally
higher representation. A total of 28 reservoirs were selected based on the search criteria and referred to hereafter
as ‘case-study reservoirs’ (figure 1). Six sites did not have water quality or GHG records from the NLA or GHG
measurement inventory, but were still included for better representation across the geographic extent of the
CONUS and the variety of ecoregions. Finally, sites were chosen to represent a spectrum of size (surface area and
storage volume), age, and purposes. Characteristics of the case-study reservoirs were obtained from the dam and
reservoir inventories. The process for selection and data sources is summarized in figure S1.

The sample of case-study reservoirs ranged in surface area from 0.12 to 457 km* (median = 19.7 km?) and in
storage from 0.1 t0 8,042 x 10° m’. The sample was skewed towards larger reservoirs, with 20 of the 28 total
reservoirs exceeding the 75th percentile of all US hydropower dams linked to operational power plants and
inventoried reservoirs for both surface area and storage (figures S2A, B). The range of age in case-study reservoirs
was 28—110 years, spanning the 1st to the 75th percentile of US hydropower reservoirs (figure S2C). Case-study
reservoirs were younger, with a median age of 63 years compared to 91 years for other US hydropower
reservoirs. 86% of the case-study reservoirs serve more than one purpose besides hydropower compared to 72%
of the US hydropower dams that also support other purposes (figure S2D).

The case-study reservoirs spanned a similar range in water quality characteristics as observed in the dataset of
global hydropower reservoirs (Deemer et al 2016) and the dataset of US hydropower reservoirs in the NLA
(figure S3). For chlorophyll-a (figure S3A), total phosphorus (figure S3B), and total nitrogen concentrations
(figure S3C), the case-study reservoirs spanned from the lowest reported value in the NLA measurements
through the 75th percentile, 88th percentile, and 93rd percentile, respectively. The three reservoirs with the
lowest total phosphorus concentrations were included in the case-study, one of which also had the lowest
chlorophyll-a concentration (French Meadows, CA00856). A different case-study reservoir had the lowest total
nitrogen concentration (Upper Baker WA00173). As a result of this slight skew toward lower chlorophyll-a and
nutrient concentrations, both the case-study reservoirs and US hydropower reservoirs underrepresent
eutrophic systems compared to global reservoirs (figures S3D, E).

2.2. Inputs, assumptions, and application of the G-res model
G-resv.2.1 (Prairie et al 2021) was used to predict GHG emissions for the 28 case-study reservoirs. While
detailed descriptions of the tool and validation of its underlying models are provided by the tool developers, we
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Figure 1. Locations of hydropower reservoirs and those selected as case-studies for G-res model application in this study. Identifiers
shown for reservoirs correspond with those used in the National Inventory of Dams (USACE 2019).

provide an overview of the key inputs and structure of the tool. Inputs to the G-res model consist of either
characteristics of the catchment or the reservoir (physical and operational). The modelled system is not
dynamic, so emissions are not simulated over a series of time steps. Instead, the model uses empirical models to
calculate emissions on an annualized basis (e.g., g CO, y ). Inputs to the model are therefore static and assumed
to be representative of reservoir conditions from impoundment to end-of-assumed-life (100 years). In many
cases, inputs were derived from remotely sensed or modelled data (detailed in table 1) and required processing
using GIS software or cloud-based processing in Google Earth Engine.

Specific inputs include water treatment (i.e., whether there were primary, secondary, or tertiary treatment
facilities in the catchment), parameters describing the general morphology (volume, surface area, maximum
depth) of the reservoir, and operations (intake depth and annual releases) at the dam. Several parameters (mean
depth, thermocline depth, phosphorus loading, etc) were estimated using default G-res estimation methods;
these default values were overridden if data were available through publicly available documents such as license
documents, fishing depth reports, or published studies reporting water quality conditions (see
Supplemental Data).

In this study, estimated emissions were based on reservoir characteristics only; life-cycle emissions
attributed to materials and construction of the dam were not evaluated. Reservoir emissions were estimated for
multiple pathways (diffusion, ebullition, and degassing for CH, and diffusion for CO,) and reported as net
emissions (i.e., pre-impoundment emissions and unrelated anthropogenic sources of emissions subtracted from
post-impoundment emissions). Pre-impoundment emissions are based on factors related to land cover and soil
types within a buffer around the perimeter of the reservoir. Conditions in the buffer were assumed to be
representative of those that existed prior to impoundment of the river and filling of the reservoir. Emissions
attributed to unrelated anthropogenic sources are associated with the input of phosphorus to the reservoir from
human-related activities in the catchment (i.e., sewage and human-related land use) (Prairie et al 2017). For
convenience in comparing emissions across the different pathways and GHGs, footprints were calculated as CO,
equivalents (CO,eq) using the default G-res 100-year horizon global warming potential factor (GWP100), where
CH, is multiplied by 34, the most conservative GWP100 reported by the IPCC Fifth Assessment Report (Myhre
etal2013). GHG footprints (overall and by individual pathway) were also translated to a measure commonly
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Table 1. Catchment and reservoir attributes and climate drivers used as inputs to the G-res model.

Description (units) Resolution Source Processing
Catchment/reservoir buffer
parameters
Area (km?) 10 m USGS National Elevation Dataset Used ArcGIS 10.7 to fill depressions, deter-
mine flow direction, accumulation, and
delineate catchment boundary
Land cover 30 m 2016 National Land Cover Database Calculated area as a percentage of catch-
(Dewitz 2019) ment and reservoir buffer area
Soil carbon content 250 m SoilGrids Global Gridded Soil Calculated mean soil carbon content over
(kgCm™?) (Hengl etal 2017) Information the catchment and reservoir buffer area
Mean annual runoffin 4km TerraClimate Monthly Water Balance Aggregated the monthly mean runoff from
catchment (mmy~ b for Global Terrestrial Surfaces 1990-2019 on an annual basis and calcu-
(Abatzoglou etral 2018) lated the annual average over the catch-
mentarea
Population in catchment 1 km 2020 Gridded Population of the Multiplied average density by the catch-
World v4.11 (CIESIN Center for ment area
International Earth Science
Information Network 2018)
Reservoir parameters
Average air temperature (°C) 1 km Daymet v4 Daily Surface Weather and Calculated average monthly temperature
Climatological Summaries over 1990-2019 from daily temperature
over the reservoir area
Wind speed at 10 m (ms ™) 4 km Gridmet: University of Idaho Gridded Calculated average annual wind speed over
Surface Meteorological Dataset the reservoir area from 1990-2019 daily
(Abatzoglou 2013) wind speed
Global Horizontal 0.5 NASA Surface Meteorology and Solar Calculated average daily radiation over the
Radiation (kWhm2d ") degree Energy Release 6.0 reservoir area according to G-res technical
(~55 km) (Stackhouse et al 2015) guidance (Prairie et al 2017) for 1983-2005

based on latitude

reported in sampling literature, areal daily flux of carbon (mgC m™~*d "), by multiplying the CO,eq by 0.27
(fraction of the atomic weight of CO, attributed to carbon) and then multiplying by the fraction of total reservoir

emissions for each pathway.

We compared G-res modelled results with prior empirical measurements reported by Deemer et al
(2016). These describe areal emissions of CO, via diffusion, and CH, via ebullition and diffusion from
167 hydropower reservoirs around the world. 18% of these reservoirs are located in the US, and eight of
the 28 case-study reservoirs have empirical measurements of either CO, or CH, emissions reported in this
dataset. This dataset also includes water quality measures (reservoir-average chlorophyll-a, total phosphorus,
and trophic status) for a subset of these hydropower reservoirs. Note that areal GHG flux for each of the
pathways and water quality measures are not available at all reservoirs in the Deemer et al (2016) dataset.
Water quality information (reservoir-average chlorophyll-a, total phosphorus, total nitrogen, and benthic
condition) was also obtained from the 2012 NLA (USEPA 2016) for 16 of the 28 reservoirs in the case-study

analysis.

Finally, to evaluate consistency between estimates for the diverse subset of case-study reservoirs and
estimates that have been reported for a set of larger reservoirs, we compared case-study results with emission
estimates that were modelled using G-res at a coarser resolution (Harrison et al 2021). These are summarized as
1-degree gridded estimates of total GHG emissions across all emission pathways over the CONUS. These
gridded estimates were available for all 28 case-study reservoirs using the grid cell where the dam is located or the
nearest neighboring grid cell.

3. Results

The 28 case-study reservoirs had high variability in net annual GHG emissions (figure 2). Values spanned from
19t0201,528 Mg of CO,eqy ' equivalents, with a median emission rate of 5,804 Mg CO,eqy . Variation in
the share of total emissions attributed to each pathway was considerable across the case-study reservoirs. In 18 of
the 28 reservoirs, CO, diffusion was the dominant emission pathway; in 15 reservoirs, this pathway accounted
for more than 50% of the total emissions. CH, ebullition was the most dominant pathway in 9 of the 28
reservoirs and in 5 reservoirs, it accounted for more than 50% of total emissions. Predicted CH, diffusive and
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Figure 2. Distribution and magnitude of GHG emissions by reservoir and by pathway. High variability is observed on a per-reservoir
basis, as well as across the different emissions pathways. The width of each plot is scaled to total emission while colors represent the
percentage of the total reservoir GHG emissions attributed to each pathway. Note the logarithmic scale on the x-axes.

degassing emissions generally comprised small portions of total emissions at the case-study reservoirs.
Degassing accounted for <10% of total emissions for all but four of the reservoirs, despite many containing
intakes located below the thermocline depth (where oxygen-poor conditions are more likely to facilitate
anaerobic methanogenesis and prevent oxidization of CH,4 to CO,). The reservoirs with the greatest overall areal
fluxes, were largely dominated by CH, ebullition, with CH, degassing comprising a relatively small share of total
emissions (maximum of 24% of total CO,eq).

A comparison of areal emissions and net generation footprints (total emissions normalized to
annual generation) with respect to reservoir size (volume and surface area) highlighted several complexities
(figure 3). For example, many of the smaller reservoirs had relatively small generation footprints but some of
the largest net areal fluxes (i.e., point labeled C in figure 3). Additionally, the largest net generation footprints
were estimated at locations on different ends of the reservoir size spectrum (i.e., points labeled A and B in
figure 3). Point A (MA00942) is a small mill structure that was retrofit nearly 30 years after it was built to
operate with minimal storage or additional alteration of the non-hydropower releases, while Point B
(TX00011) is a major water supply and flood control reservoir. In both cases, hydropower generation is
heavily constrained by the other services provided by the dam and the corresponding storage and release
rules. On the other hand, Point C (OR00559) was built primarily for hydropower, and generates more
energy than other reservoirs even though it is significantly smaller in surface area and volume. This reservoir
had one of the smallest generation footprints whereas its areal footprint was the largest of the case-study
reservoirs.

Such complex relationships underscore the necessity of considering the range of generation scenarios and
constraints that likely exist at multi-purpose reservoirs, particularly where the primary purpose is not
hydropower. This is relevant given that common modelling approaches in the literature that have at times used
area, generation, or the area to generation ratio as a predictor for GHG emissions (e.g., Scherer and Pfister 2016).
For the case-study reservoirs that are included in Deemer et al (2016), modelled post-impoundment areal
footprints were positively correlated with measurements reported for all pathways except CO, diffusion
(figure 4). Four of the reservoirs reported negative CO, diffusion footprints (reflecting uptake of CO,) but the
G-res model estimated positive emissions.

Total areal carbon flux for the case-study reservoirs was highly variable (84 to 767 mg Cm ™ >d ",
median =275 mg Cm ™ *d ™). Comparisons to total measured areal fluxes reported in Deemer et al (2016) are
imperfect because measurements often do not include all pathways. However, estimated areal fluxes for the
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case-studies were on the lower end of the spectrum of measured areal fluxes, which range from —321 t0 2150 mg
Cm *d™! (median = 272 mg Cm~*d ") for US reservoirs and —355 to 2973 mg Cm ™ °d ™' (median = 283 mg
Cm 2d™ ") for global reservoirs.

The areal post-impoundment GHG emission footprints of these case-study reservoirs were also
positively correlated (Pearson r =0.81, p < 0.001) with those reported by Harrison et al (2021), though
emission estimates from the case-study reservoirs were on average ~1.6 times lower than the gridded
estimates (figure 5). Areal fluxes in the case-study reservoirs were less variable and generally lower than
those in the global study, ranging from 138 to 1,052 gCO,eqm™ >y ', while the global study reported a
range of 115 to 145,472 gCO,eqm >y~ ' (Harrison et al 2021). Differences in the areal emission footprints
of methane (US case-study versus US and non-US reservoirs modelled in Harrison et al 2021) were
significant (p < 0.001); differences in CO, were not statistically significant (p = 0.07). These differences are
summarized in table S1.
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Figure 5. G-res GHG emissions from 28 case-study reservoirs compared to predicted GHG emissions from gridded data from
Harrison etal (2021). Point size represents surface area. The solid line is the linear trend line and the dashed line is the 1:1 line. Both
axes are log; o transformed. Three points indicated A, B, and C are the same as in figure 3. Gridded predictions overestimated GHG
emissions from the case-study reservoirs in nearly all instances.

4. Discussion

4.1. Comparison to other modelling and measurement studies

The dominant emission pathways observed in the 28 case-study reservoirs were generally in line with Harrison
etal (2021). In both studies, CO, diffusion and CH, ebullition were the dominant emissions pathways for
hydropower reservoirs across CONUS. There was a difference, however, in the pattern observed at the reservoirs
with the greatest total areal fluxes. While case-study reservoirs in the US with the highest areal fluxes were largely
dominated by ebullitive CH, emissions and degassing generally made up a smaller share of the total emissions,
Harrison et al found degassing to be the dominant pathway for those reservoirs with the largest areal fluxes.

The median areal carbon flux for case-study reservoirs was consistent with median reported values of
mesurements for other US reservoirs and global reservoirs. The areal carbon flux at case-study reservoirs nearly
spanned an order of magnitude, but were still concentrated towards the lower range of other US and global
reservoirs, despite including all pathways. Negative areal carbon flux were sometimes reported in US and global
reservoirs in literature; however, G-res modelled fluxes were never found to be negative. This highlights the
limited ability of the G-res model to represent negative post-impoundment fluxes. However, it is important to
note that synoptic measurements have their own limitations; a negative flux measured at a single point in space
and time may not represent overall conditions in the reservoir.

Gridded estimates of total emissions were consistently greater than those calculated in this study for
individual reservoirs. Some differences were expected because the gridded estimates are based on an aggregation
and interpolation of reservoirs, so the gridded value may reflect conditions of multiple reservoirs. Additionally,
the characteristics of the reservoirs used to produce the gridded estimates differ from those used in this study.
For example, the reservoirs used in the global study were generally larger (minimum of 1 km?) and include both
hydropower and non-hydropower reservoirs. These differences highlight a limitation of the interpolated values
from the gridded dataset; they may represent spatial patterns well, but they may not accurately reflect conditions
when downscaled to individual reservoirs.

4.2. Implications for US and global hydropower reservoirs
There are several possible issues with drawing conclusions about regional patterns or the entire US hydropower
fleet based on the limited sample of the case-study reservoirs. For example, the underrepresentation of eutrophic
systems in the case-study reservoirs compared to global reservoirs could lead to underestimation of emissions.
Additionally, case-study reservoirs were younger and larger on average than the broader set of US hydropower
reservoirs. Many of the limitations associated with upscaling or extrapolating the case study modelled emission
estimates also apply to upscaling of empirical GHG measurements. To address this, one might develop post-
stratification methods to assign sampling weights based on reservoir attributes to which G-res is known to be
sensitive.

Another important aspect to consider for the larger fleet of US hydropower reservoirs is expected change in
catchment development and climate. For example, population increases, urbanization, and anthropogenic
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catchment activities are all tied closely to reservoir processes through water availability, nutrient and carbon
inputs to reservoirs, and changes in reservoir management practices (Ho et al 2017). These factors that could
affect carbon cycling and emissions in reservoirs could be exacerbated by compounding effects of changing
climate. According to downscaled projections of temperature (Thrasher et al 2013), average annual
temperatures will increase at all 28 locations by the end of century under representative concentration pathways
4.5, 6.0, and 8.5 which can impact water availability and catchment vegetation. Additionally, climate is expected
to become warmer and drier in many parts of the US, though increased precipitation is expected in the
northeastern to upper midwestern US (Beck et al 2018). Many hydropower reservoirs are located in regions
where the climate class is expected to change by the end of the century (Hansen, Jackson and DeSomber 2021);
potential effects of these changes will need to be considered by reservoir operators and the hydropower
community throughout the country as they seek to further understand and mitigate emissions.

Impacts of changing land use, development, and climate can be explored by comparing scenarios or time
periods. However, a significant limitation for a non-dynamic statistical modelling approach like G-res is the
inability to capture seasonal or year-to-year variation. In reality, variation can impact GHG production and
emissions. Climate and environmental changes resulting in warming could affect a variety of lake processes
including thermal stratification, which is a critical control on carbon processing, but which the G-res model does
not capture in a dynamic fashion. Internal carbon processes and feedbacks can be complex during stratified
periods, which have become longer (Woolway et al 2021) and stronger (Kraemer et al 2015, Pilla et al 2020) in
lakes and reservoirs around the world (Sobek et al 2009, Carey et al 2018). Longer and stronger stratification can
lead to longer periods of low oxygen at depth (Fang and Stefan 2009, Foley et al 2012, Rosner, Miiller-Navarra
and Zorita 2012, Knoll et al 2018) that promotes CH4 production. Additionally, both the production and
subsequent decomposition of algae is exacerbated by warming (Visser et al 2016). This response also contributes
to low oxygen in deep waters that promotes CH4 production and has been highlighted as an important driver of
CH4 emissions at a global scale (Sepulveda-Jauregui et al 2018, Beaulieu, DelSontro and Downing 2019). While
reduced oxygen in deep regions of lakes and reservoirs is a pervasive pattern globally, there is high variability in
both the rate and drivers of change (Jane et al 2021). This variability over space and through time makes it
challenging to quantify GHG emissions within reservoirs. Use of physically-based models or process
representation in statistical models will enable better understanding of emissions over time and across different
bodies of water.

In addition to process variability that is not yet captured by the G-res model, there may also be uncertainties
in key characteristics that lead to uncertainty in modelled emissions. For example, reported reservoir volumes or
depths may differ from one reservoir or dam inventory to another, depending on the resolution or method used
to determine the characteristic. A formal sensitivity analysis that considers uncertainty and quality assessments
of the inputs is needed to determine how these uncertainties impact modelled results.

5. Conclusion

Comparisons between case-study modelled GHG emissions and measurements or modelled emissions from
other subsets of reservoirs highlight where there is consistency in observed patterns or where there may be
limitations in describing individual reservoirs. Trends in GHG emissions pathways at the case study hydropower
reservoirs are generally consistent with those observed across global scales with CO, diffusive fluxes dominating
the overall GHG footprint for the majority of the reservoirs. Comparisons also provide context for how US
hydropower against to other subsets of reservoirs. While there was general agreement between estimates and
measurements for most pathways, there were several instances where possible carbon sinks were not well
represented by the G-res model. Additionally, while estimates of net footprints were highly correlated with those
extrapolated from estimates at larger reservoirs modeled in other studies, they were consistently lower across the
smaller and diverse multi-purpose case-study reservoirs.

While degassing caused by deep water intakes was not the dominant pathway for emissions at any of the
case-study reservoirs (unlike the largest emitters in the global G-res study), it did account for a substantial
portion of emissions at several of the reservoirs and remains an important opportunity for reducing GHG
emissions. Limitations in representing intake depth dynamically (due to static representation of intake depth in
the model) may be overcome with additional data collection and scenario-based modeling to evaluate design
and operational strategies. Additionally, even in empirical GHG measurements, the degassing pathway is very
understudied compared to other emissions pathways. Greater focus on measuring this pathway may reduce the
uncertainties in future modelling efforts. Understanding these mechanisms will require extending analyses by
including more detailed representations of catchment hydrology and human/reservoir management interface
and considering policies, water rights, multi-purpose uses of the water, and not solely water availability or
operational strategies.
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GHG emissions from waterbodies are a critical part of the global carbon equation. Accurate representations
of GHG footprints (and their contributing factors) at hydropower reservoirs are especially important to enable
evaluation of environmental tradeoffs during the transition away from fossil fuel and ensure emissions
reduction targets are met. Especially when these waterbodies are often managed for various purposes, more
detailed and accurate reservoir GHG emissions footprints can lead to better identification of where monitoring
and mitigation resources could be allocated, and which strategies could be employed to reduce reservoir
emissions.

Acknowledgments

The authors recognize the G-res tool development team, including Sara Mercier-Blais, for producing thorough
documentation of the tool and its underlying models. We thank Kristine Moody for her review and suggestions
for improving the manuscript.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

Funding

This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-000R22725 with the US
Department of Energy (DOE). The US government retains and the publisher, by accepting the article for
publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide
license to publish or reproduce the published form of this manuscript, or allow others to do so, for US
government purposes. DOE will provide public access to these results of federally sponsored research in
accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

ORCIDiDs

Carly Hansen @ https:/orcid.org/0000-0001-9328-0838

References

Abatzoglou ] T 2013 Development of gridded surface meteorological data for ecological applications and modelling Int. J. Climatology 33
121-31

Abatzoglou ] T et al 2018 TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015
Scientific data 5 1-12

Barros N et al 2011 Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude Nature Geoscience 4 593

Bastviken D et al 2011 Freshwater methane emissions offset the continental carbon sink Sci. 331 50

Beaulieu ] J et al 2014 High methane emissions from a midlatitude reservoir draining an agricultural watershed Environ. Sci. Technol. 48
11100-8

Beaulieu ] J et al 2020 Methane and carbon dioxide emissions from reservoirs: controls and upscaling J. Geophysical Research: Biogeosciences
1251-23

Beaulieu ] J, DelSontro T and DowningJ A 2019 Eutrophication will increase methane emissions from lakes and impoundments during the
21st century Nature commun. 10 1-5

Beaulieu ] J, McManus M G and Nietch C T 2016 Estimates of reservoir methane emissions based on a spatially balanced probabilistic-survey
Limnology and Oceanography 61 S27-40

Beck H E et al 2018 Present and future Képpen-Geiger climate classification maps at 1-km resolution Sci. data 5 1-12

Berger CJ, Bigham G N and Wells S A 2014 Prediction of GHG emissions from a new reservoir Proceedings from World Environmental and
Water Resources Congress 2014 (Portland, OR) 1010-9

Carey C Cet al 2018 Oxygen dynamics control the burial of organic carbon in a eutrophic reservoir Limnology and Oceanography Letters 3
293-301

CIESIN (Center for International Earth Science Information Network) Columbia University 2018 Gridded population of the world, version
4 (GPWv4): Population Density Revision 11. NASA Socioeconomic Data and Applications Center (SEDAC)

Cole] ] etal2007 Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget Ecosysterns 10 172—85

Deemer B R et al 2016 Greenhouse gas emissions from reservoir water surfaces: a new global synthesis BioScience 66 949—64

DelSontro T, Beaulieu ] ] and Downing J A 2018 Greenhouse gas emissions from lakes and impoundments: Upscaling in the face of global
change Limnology and Oceanography Letters 3 6475

Demarty M, Bastien ] and Tremblay A 2011 Annual follow-up of gross diffusive carbon dioxide and methane emissions from a boreal
reservoir and two nearby lakes in Québec, Canada Biogeosciences 8 41-53

Dewitz ] 2019 National land cover database (NLCD) 2016 products: U.S. geological survey data release

Ehhalt D H 1974 The atmospheric cycle of methane Tellus 26 58—70

10


http://energy.gov/downloads/doe-public-access-plan
https://orcid.org/0000-0001-9328-0838
https://orcid.org/0000-0001-9328-0838
https://orcid.org/0000-0001-9328-0838
https://orcid.org/0000-0001-9328-0838
https://doi.org/10.1002/joc.3413
https://doi.org/10.1002/joc.3413
https://doi.org/10.1002/joc.3413
https://doi.org/10.1002/joc.3413
https://doi.org/10.1038/sdata.2017.191
https://doi.org/10.1038/sdata.2017.191
https://doi.org/10.1038/sdata.2017.191
https://doi.org/10.1038/ngeo1211
https://doi.org/10.1126/science.1196808
https://doi.org/10.1021/es501871g
https://doi.org/10.1021/es501871g
https://doi.org/10.1021/es501871g
https://doi.org/10.1021/es501871g
https://doi.org/10.1029/2019JG005474
https://doi.org/10.1029/2019JG005474
https://doi.org/10.1029/2019JG005474
https://doi.org/10.1038/s41467-019-09100-5
https://doi.org/10.1038/s41467-019-09100-5
https://doi.org/10.1038/s41467-019-09100-5
https://doi.org/10.1002/lno.10284
https://doi.org/10.1002/lno.10284
https://doi.org/10.1002/lno.10284
https://doi.org/10.1038/sdata.2018.214
https://doi.org/10.1038/sdata.2018.214
https://doi.org/10.1038/sdata.2018.214
https://doi.org/10.1002/lol2.10057
https://doi.org/10.1002/lol2.10057
https://doi.org/10.1002/lol2.10057
https://doi.org/10.1002/lol2.10057
https://doi.org/10.1007/s10021-006-9013-8
https://doi.org/10.1007/s10021-006-9013-8
https://doi.org/10.1007/s10021-006-9013-8
https://doi.org/10.1093/biosci/biw117
https://doi.org/10.1093/biosci/biw117
https://doi.org/10.1093/biosci/biw117
https://doi.org/10.1002/lol2.10073
https://doi.org/10.1002/lol2.10073
https://doi.org/10.1002/lol2.10073
https://doi.org/10.5194/bg-8-41-2011
https://doi.org/10.5194/bg-8-41-2011
https://doi.org/10.5194/bg-8-41-2011
https://doi.org/10.3402/tellusa.v26i1-2.9737
https://doi.org/10.3402/tellusa.v26i1-2.9737
https://doi.org/10.3402/tellusa.v26i1-2.9737

10P Publishing

Environ. Res. Commun. 4(2022) 121008 W Letters

Fang X and Stefan H G 2009 Simulations of climate effects on water temperature, dissolved oxygen, and ice and snow covers in lakes of the
contiguous US under past and future climate scenarios Limnology and Oceanography 54 235970

Foley B et al 2012 Long-term changes in oxygen depletion in a small temperate lake: effects of climate change and eutrophication Freshwater
Biology. 57 278-89

Guseva S et al 2020 Variable physical drivers of near-surface turbulence in a regulated river Water Resources Research 57 ¢€2020WR027939

Hansen C and Matson P G 2021 Hydropower infrastructure - lakes, reservoirs, and rivers (HILARRI) HydroSource. (http://doi.org/10.
21951/1781642)

Hansen C H, Jackson K and DeSomber K 2021 Evaluating future US hydropower opportunities Int. J. Hydropower Dams 28 4

Harrison J A etal 2021 Year-2020 global distribution and pathways of reservoir methane and carbon dioxide emissions according to the
greenhouse gas from reservoirs (G-res) model Global Biogeochem. Cycles. 35 1-14

Hengl T et al 2017 SoilGrids250m: Global gridded soil information based on machine learning PLoS One 12 0169748

Ho M etal 2017 The future role of dams in the United States of America Water Resources Research. 53 982—-98

International Hydropower Association (IHA) 2021 2021 Hydropower Status Report. Available at: (https://hydropower.org/publications/
2021-hydropower-status-report)

Jager H1etal 2022 Getting lost tracking the carbon footprint of hydropower Renew. Sustain. Energy Rev. 162 112408

Jane S F et al 2021 Widespread deoxygenation of temperate lakes Nature. 594 6670

Johnson M M and Uria-Martinez R 2021 U.S. Hydropower Development Pipeline Data and Metadata.

Knoll L B et al 2018 Browning-related oxygen depletion in an oligotrophic lake Inland Waters. 8 255-63

Kraemer BM et al 2015 Morphometry and average temperature affect lake stratification responses to climate change Geophysical Research
Letters424981-8

Lovelock CE eral 2019 2019 refinement to the 2006 IPCC guidelines for national greenhouse gas inventories: Wetlands. Volume 4 Chapter 7.
(https://ipcc-nggip.iges.or.jp/public/2019rf/pdf/4_Volume4/19R_V4_Ch07_Wetlands.pdf)

Mendonga R etal 2017 Organic carbon burial in global lakes and reservoirs Nature Communications. 8 1-61694

Myhre G et al 2013 Anthropogenic and natural radiative forcing Climate Change 2013: the Physical Science Basis; Working Group I
Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 659740

O’connor P et al 2016 Greenhouse gas emissions reductions Hydropower Vision: A New chapter for America’s 1st Renewable Electricity Source.
300-10 (https://energy.gov/sites/default/files /2018 /02 /49 /Hydropower-Vision-021518.pdf)

Omernik J M and Griffith G E 2014 Ecoregions of the conterminous United States: evolution of a hierarchical spatial framework
Environmental management 54 124966

Pilla R M et al 2020 Deeper waters are changing less consistently than surface waters in a global analysis of 102 lakes Sci. reports 10 1-15

Prairie Y etal 2017 The GHG Reservoir Tool (G-res) Technical documentation v2.1 (2019-08-21). UNESCO/IHA research project on the GHG
status of freshwater reservoirs. Joint publication of the UNESCO Chair in Global Environmental Change and the International
Hydropower Association.

Prairie Y T et al 2018 Greenhouse gas emissions from freshwater reservoirs: what does the atmosphere see? Ecosystems 21 1058-71

Prairie Y T et al 2021 A new modelling framework to assess biogenic GHG emissions from reservoirs: The G-res tool Environ. Modelling
Softw. 143105117

Rosentreter ] A et al 2021 Half of global methane emissions come from highly variable aquatic ecosystem sources Nature Geoscience 14
225-30

Rosner RR, Miiller-Navarra D C and Zorita E 2012 Trend analysis of weekly temperatures and oxygen concentrations during summer
stratification in Lake Plu8see: A long-term study Limnology and Oceanography 57 1479-91

Scherer L and Pfister S 2016 Hydropower’s biogenic carbon footprint PLoS One. 11 0161947

Sepulveda-Jauregui A et al 2018 Eutrophication exacerbates the impact of climate warming on lake methane emission Sci. Total Environ. 636
411-9

Sobek S et al 2009 Organic carbon burial efficiency in lake sediments controlled by oxygen exposure time and sediment source Limnology and
Oceanography 54 2243-54

Stackhouse P'W et al 2015 Surface meteorology and solar energy (SSE) release 6.0 Available at: https://power.larc.nasa.gov/data-access-
viewer/

Stepanenko V et al 2016 LAKE 2.0: a model for temperature, methane, carbon dioxide and oxygen dynamics in lakes Geoscientific Model
Development 9 1977-2006

St. Louis V L et al 2000 Reservoir surfaces as sources of greenhouse gases to the atmosphere: A global estimate BioScience 50 766—75

Thrasher B et al 2013 Downscaled climate projections suitable for resource management Eos, Transactions American Geophysical Union.
Wiley Online Library 94 321-3

Tranvik L] et al 2009 Lakes and reservoirs as regulators of carbon cycling and climate Limnology and oceanography 54 2298-314

Uria-Martinez R, Johnson M M and Shan R 2021 US Hydropower Market Report. (https://energy.gov/sites/prod/files/2021,/01/£82/us-
hydropower-market-report-full-2021.pdf)

USACE 2019 National Inventory of Dams. Available at:https://nid.sec.usace.army.mil /

U.S. Environmental Protection Agency (USEPA) 2016 National Aquatic Resource Surveys, National Lakes Assessment 2012 (data and
metadata files). (Accessed: 13 October 2021) Available at: https://epa.gov/national-aquatic-resource-surveys/data-national-
aquatic-resource-surveys

Visser P M et al 2016 How rising CO, and global warming may stimulate harmful cyanobacterial blooms Harmful Algae. 54 145-59

WellsS A (2021) Model Description CE-QUAL-W2: A two-Dimensional, Laterally Averaged, Hydrodynamic and Water Quality Model,
Version 4.5 Available at: http: //ce.pdx.edu/w2/

Woolway R1 etal 2021 Phenological shifts in lake stratification under climate change Nature commun. 12 111

11


https://doi.org/10.4319/lo.2009.54.6_part_2.2359
https://doi.org/10.4319/lo.2009.54.6_part_2.2359
https://doi.org/10.4319/lo.2009.54.6_part_2.2359
https://doi.org/10.1111/j.1365-2427.2011.02662.x
https://doi.org/10.1111/j.1365-2427.2011.02662.x
https://doi.org/10.1111/j.1365-2427.2011.02662.x
https://doi.org/10.1029/2020WR027939
http://doi.org/10.21951/1781642
http://doi.org/10.21951/1781642
https://doi.org/10.1029/2020GB006888
https://doi.org/10.1029/2020GB006888
https://doi.org/10.1029/2020GB006888
https://doi.org/10.1371/journal.pone.0169748
https://doi.org/10.1002/2016WR019905
https://doi.org/10.1002/2016WR019905
https://doi.org/10.1002/2016WR019905
https://hydropower.org/publications/2021-hydropower-status-report
https://hydropower.org/publications/2021-hydropower-status-report
https://doi.org/10.1016/j.rser.2022.112408
https://doi.org/10.1038/s41586-021-03550-y
https://doi.org/10.1038/s41586-021-03550-y
https://doi.org/10.1038/s41586-021-03550-y
https://doi.org/10.1080/20442041.2018.1452355
https://doi.org/10.1080/20442041.2018.1452355
https://doi.org/10.1080/20442041.2018.1452355
https://doi.org/10.1002/2015GL064097
https://doi.org/10.1002/2015GL064097
https://doi.org/10.1002/2015GL064097
https://www.ipcc-nggip.iges.or.jp/public/2019rf/pdf/4_Volume4/19R_V4_Ch07_Wetlands.pdf
https://doi.org/10.1038/s41467-017-01789-6
https://doi.org/10.1038/s41467-017-01789-6
https://doi.org/10.1038/s41467-017-01789-6
https://doi.org/10.1017/CBO9781107415324.018
https://doi.org/10.1017/CBO9781107415324.018
https://doi.org/10.1017/CBO9781107415324.018
https://doi.org/10.2172/1502612
https://doi.org/10.2172/1502612
https://doi.org/10.2172/1502612
https://www.energy.gov/sites/default/files/2018/02/f49/Hydropower-Vision-021518.pdf
https://doi.org/10.1007/s00267-014-0364-1
https://doi.org/10.1007/s00267-014-0364-1
https://doi.org/10.1007/s00267-014-0364-1
https://doi.org/10.1038/s41598-020-76873-x
https://doi.org/10.1038/s41598-020-76873-x
https://doi.org/10.1038/s41598-020-76873-x
https://doi.org/10.1007/s10021-017-0198-9
https://doi.org/10.1007/s10021-017-0198-9
https://doi.org/10.1007/s10021-017-0198-9
https://doi.org/10.1016/j.envsoft.2021.105117
https://doi.org/10.1038/s41561-021-00715-2
https://doi.org/10.1038/s41561-021-00715-2
https://doi.org/10.1038/s41561-021-00715-2
https://doi.org/10.1038/s41561-021-00715-2
https://doi.org/10.4319/lo.2012.57.5.1479
https://doi.org/10.4319/lo.2012.57.5.1479
https://doi.org/10.4319/lo.2012.57.5.1479
https://doi.org/10.1371/journal.pone.0161947
https://doi.org/10.1016/j.scitotenv.2018.04.283
https://doi.org/10.1016/j.scitotenv.2018.04.283
https://doi.org/10.1016/j.scitotenv.2018.04.283
https://doi.org/10.1016/j.scitotenv.2018.04.283
https://doi.org/10.4319/lo.2009.54.6.2243
https://doi.org/10.4319/lo.2009.54.6.2243
https://doi.org/10.4319/lo.2009.54.6.2243
https://power.larc.nasa.gov/data-access-viewer/
https://power.larc.nasa.gov/data-access-viewer/
https://doi.org/10.5194/gmd-9-1977-2016
https://doi.org/10.5194/gmd-9-1977-2016
https://doi.org/10.5194/gmd-9-1977-2016
https://doi.org/10.1641/0006-3568(2000)050[0766:RSASOG]2.0.CO;2
https://doi.org/10.1641/0006-3568(2000)050[0766:RSASOG]2.0.CO;2
https://doi.org/10.1641/0006-3568(2000)050[0766:RSASOG]2.0.CO;2
https://doi.org/10.1002/2013EO370002
https://doi.org/10.1002/2013EO370002
https://doi.org/10.1002/2013EO370002
https://doi.org/10.4319/lo.2009.54.6_part_2.2298
https://doi.org/10.4319/lo.2009.54.6_part_2.2298
https://doi.org/10.4319/lo.2009.54.6_part_2.2298
https://energy.gov/sites/prod/files/2021/01/f82/us-hydropower-market-report-full-2021.pdf
https://energy.gov/sites/prod/files/2021/01/f82/us-hydropower-market-report-full-2021.pdf
https://www.epa.gov/national-aquatic-resource-surveys/data-national-aquatic-resource-surveys
https://www.epa.gov/national-aquatic-resource-surveys/data-national-aquatic-resource-surveys
https://doi.org/10.1016/j.hal.2015.12.006
https://doi.org/10.1016/j.hal.2015.12.006
https://doi.org/10.1016/j.hal.2015.12.006
http://www.ce.pdx.edu/w2/
https://doi.org/10.1038/s41467-021-22657-4
https://doi.org/10.1038/s41467-021-22657-4
https://doi.org/10.1038/s41467-021-22657-4

	1. Introduction
	2. Data and methods
	2.1. Site selection
	2.2. Inputs, assumptions, and application of the G-res model

	3. Results
	4. Discussion
	4.1. Comparison to other modelling and measurement studies
	4.2. Implications for US and global hydropower reservoirs

	5. Conclusion
	Acknowledgments
	Data availability statement
	Funding
	References



