
1.  Introduction
Recent work has highlighted the importance of inland waters generally, and reservoirs specifically, as hot-
spots for carbon processing and C-based greenhouse gas (GHG) emission (Butman & Raymond, 2011; Cole 
et al., 2007; Deemer et al., 2016; Deemer & Holgerson, 2021; DelSontro et al., 2018; Maavara et al., 2017, 2020; 
Raymond et al., 2013; Rosentreter et al., 2021; Tranvik et al., 2009). Yet, global estimates of reservoir GHG 
emissions remain highly uncertain, varying by more than four-fold (range: 741–3,380 Tg CO2 equivalents yr−1) 
in recent analyses (Barros et al., 2011; Bastviken et al., 2011; Deemer et al., 2016; Hertwich, 2013; St. Louis 
et al., 2000; Rosentreter et al., 2021).

To date, global estimates of reservoir GHG emissions have been derived simply by multiplying global reser-
voir surface area by emission rates averaged from a limited, but growing, set of in situ flux measurements. 
While this approach may provide a reasonable first-order approximation of global fluxes, the accuracy of 
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remain uncertain, varying more than four-fold in recent analyses. Here we present results from a global 
application of the Greenhouse Gas from Reservoirs (G-res) model wherein we estimate per-area and per-
reservoir CO2 and CH4 fluxes, by specific flux pathway and in a spatially and temporally explicit manner, 
as a function of reservoir characteristics. We show: (a) CH4 fluxes via degassing and ebullition are much 
larger than previously recognized and diffusive CH4 fluxes are lower than previously estimated, while CO2 
emissions are similar to those reported in past work; (b) per-area reservoir GHG fluxes are >29% higher 
than suggested by previous studies, due in large part to our novel inclusion of the degassing flux in our 
global estimate; (c) CO2 flux is the dominant emissions pathway in boreal regions and CH4 degassing and 
ebullition are dominant in tropical and subtropical regions, with the highest overall reservoir GHG fluxes 
in the tropics and subtropics; and (d) reservoir GHG fluxes are quite sensitive to input parameters that 
are both poorly constrained and likely to be strongly influenced by climate change in coming decades 
(parameters such as temperature and littoral area, where the latter may be expanded by deepening 
thermoclines expected to accompany warming surface waters). Together these results highlight a critical 
need to both better understand climate-related drivers of GHG emission and to better quantify GHG 
emissions via CH4 ebullition and degassing.

Plain Language Summary  By damming rivers, humans have created millions of reservoirs, 
which, collectively, constitute an important greenhouse gas source, especially for methane, a particularly 
potent greenhouse gas. Using observed relationships between reservoir characteristics and greenhouse 
gas emissions, we show that much more methane either bubbles out of reservoirs or is emitted just 
downstream from reservoirs than was previously known. This is important because it may be possible 
to reduce methane emissions from downstream of reservoirs by selectively withdrawing water from 
near the surface of reservoirs, which tends to be methane-poor, rather than from greater depths, where 
methane often accumulates. We also found that on a per-area basis reservoirs are a more potent source of 
greenhouse gases than previously recognized, and that the highest rates of emissions occur in the tropics 
and subtropics. Finally, we show that estimates of reservoir greenhouse gas emissions are quite sensitive 
to climate-related factors like temperature.
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such a method relies upon a number of assumptions, all of which may have a large but heretofore unknown 
and largely unexplored impact on global flux estimates. Notably, the generally applied approach implicitly 
assumes that sampling of reservoirs accurately reflects the existing age distribution of reservoirs (because 
GHG emissions from reservoirs tend to decline over time [Abril et al., 2005; Teodoru et al., 2012]). It also 
implicitly assumes that sampling adequately captures and represents the natural spatial variation in GHG 
flux rates both within and between reservoirs, and temporal variation over seasonal to multi-year scales, 
all of which are often substantial, necessitating adequate spatial and temporal coverage of measurements 
(Wik et al., 2013, 2016). The importance of such assumptions to estimates of aquatic GHG fluxes at large-
scales is, to-date, largely unknown and untested. In addition, due to the lack of any continentally or globally 
applicable models for predicting aquatic GHG fluxes, it has not been possible to estimate the geographic 
distribution of reservoir GHG fluxes at the global scale beyond broad generalizations about latitudinal pat-
terns (e.g., Deemer et al., 2016). Nor have spatial distributions of various flux pathways for CH4 been quan-
tified or evaluated at large scales. In fact, efforts to estimate reservoir GHG fluxes have generally focused 
solely on diffusive gas fluxes (Barros et al., 2011; St. Louis et al., 2000), and it is only recently that ebullition 
fluxes have been incorporated into global reservoir GHG flux estimates (Deemer et  al.,  2016; delSontro 
et al., 2018). It has been shown that CH4 emissions due to turbine degassing can be the dominant pathway 
in individual reservoirs (Abril et al., 2005; Soued & Prairie, 2020) and could therefore be substantial at the 
global scale, but these fluxes have not previously been estimated (Deemer et al., 2016).

In previous work, we reported on the development of the G-res model, which is an open and globally 
consistent predictive framework for estimating the anthropogenic GHG footprint of individual reservoirs 
(Prairie et al., 2017, 2018). Here, our main objective is to apply the underlying emission models of G-res to 
provide the first-ever spatially and temporally explicit global estimate of reservoir CO2 and CH4 fluxes and 
the first-ever global estimate of reservoir degassing fluxes. In addition, we explore the relative contribution 
of the various emission pathways and how they vary across regions of the world. Lastly, we conducted effi-
ciency and sensitivity analysis of the models to help identify important research needs and facilitate better 
estimates of global and regional GHG emissions from reservoirs going forward.

2.  Methods
2.1.  Overview

Broadly, our approach to developing a spatially explicit estimate of the global GHG flux from reservoirs in-
volved three steps: (a) extraction of information required to apply G-res models to a larger set of reservoirs 
using globally consistent GIS layers, (b) application of the predictive models globally, including estimates of 
associated uncertainty, and (c) assessment of model sensitivity and efficiency in order to understand how 
changes in drivers are likely to affect global GHG fluxes and to identify especially important and promising 
avenues for additional research and refinement. The development of the emission models is described in 
detail in publicly available model documentation (Prairie et al., 2017), and model equations, a description 
of model input datasets, and model calibration and validation data are provided in Tables S1 and S2, and in 
a downloadable data set (Prairie et al., 2021), respectively. However, the models are described briefly below 
for completeness (Sections 2.2 and 2.3), and steps 2 and 3 are described in Sections 2.4 and 2.5.

2.2.  Model Development/Calibration Data Set

Using data compiled from 223 globally distributed reservoirs for which published measurements were avail-
able (Figure 1, Prairie et al., 2021), the G-res framework was developed from multiple linear regression 
models to predict per-area and per-reservoir CO2 and CH4 emissions. Prior to regression analysis, per-area 
flux estimates were processed in several ways to improve internal consistency. First, flux measurements 
were annualized to account for the fact that measurements are often made during summer months when 
fluxes might be higher than at other times of the year. Briefly, this annualization was accomplished for lit-
erature-reported diffusive fluxes of CO2 and CH4, and CH4 bubbling fluxes by combining the mean monthly 
air temperature for the month(s) in which fluxes were measured with the known temperature dependencies 
for CO2 and CH4 production (Q10 = 2, and 4 for CO2 and CH4, respectively [Inglett et al., 2012; Yvon-Duro-
cher et al., 2014]), and averaging flux estimates across all 12 months in a year to achieve an annual flux rate. 
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This process was carried out for each reservoir. In addition, when direct CH4 ebullition data were only avail-
able from littoral sites within reservoirs (17 of the reservoirs used to develop the G-res ebullition model), we 
accounted for the fact that bubbling tends to decline with increasing water column depth (due to increased 
hydrostatic pressure) by multiplying littoral ebullition rates by the ratio of littoral: total reservoir area to 
achieve reservoir-wide estimates. The extent of littoral area used was either the littoral area reported in the 
original publication (used when available) or the littoral area estimated using the maximum depth sampled 
for ebullition provided in the original publication (used when a direct estimate of littoral area was not avail-
able). Although this approach may underestimate lake-wide ebullition fluxes of CH4 in some systems, we 
view it as an improvement over the historical approach, which simply assumes that these littoral flux rates 
are representative of whole-lake fluxes, thereby potentially overstating their importance. Once annualized 
and area-corrected, flux estimates were log10 transformed in order to achieve approximate normal distribu-
tion of fluxes. For CH4 degassing emissions, the empirical model uses the change in concentration between 
the water intake depth and directly out of the outlet as the predicted response variable.

In addition to pre-processing flux measurements, we also collected information on reservoirs and associ-
ated catchment characteristics likely to influence CO2 and CH4 production and emission from a variety of 
sources. These potential drivers are described in detail in Prairie et al. (2017, 2018). Briefly, they included 
reservoir characteristics such as latitude, surface area, volume, maximum depth, mean depth, littoral area 
(defined as area with depth less than 3 m) as a fraction of total lake area, water residence time, mean month-
ly and annual air temperature, mean annual wind speed, mean global horizontal irradiance, estimated 
phosphorus loading and concentration, soil carbon content prior to flooding and catchment characteristics 
such as catchment area, annual precipitation, mean annual runoff, population density, annual reservoir 
inflow, and catchment land cover (Prairie et al., 2017). When possible, these data were taken directly from 
peer-reviewed studies of reservoirs, but when it was not possible to mine primary literature for reservoir 
or catchment characteristics, we relied on attributes provided by the Global Reservoirs and Lakes (GRanD) 
database (Lehner et al., 2011) or from published GIS coverages (Prairie et al., 2017, 2021). In some cases (no-
tably average depth, thermocline depth, littoral area, water residence time, and phosphorus concentrations) 
we estimated values using peer-reviewed approaches (Prairie et al., 2017). Model selection was determined 
based on best fit, reasonableness (i.e., drivers had to have a reasonable biophysical explanation to be includ-
ed), and global availability of model drivers. Flux estimates from 107, 102, 27, and 38 reservoirs were used 
to develop CO2 diffusion, CH4 diffusion, CH4 ebullition, and CH4 degassing models, respectively (Figure 1, 
Prairie et al., 2021). In a subset of reservoirs, flux estimates were available from multiple years, such that a 
total of 169, 160, 46, and 38 individual flux estimates were used to develop the CO2 diffusion, CH4 diffusion, 
CH4 ebullition, and CH4 degassing models, respectively. Significant input parameters (P < 0.05 by multi-
ple linear regression) for each GHG flux pathway are listed in Table 1, and complete models and model 
input variables are included in Tables S1 and S2, respectively. Whereas diffusive and ebullitive flux models 
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Figure 1.  Locations of greenhouse gas flux measurements used to develop G-res submodels; symbols represent the pathway for which flux estimates were 
available and the size of each symbol is proportional to the estimated flux rate (g CO2 eq. m−2 yr−1).
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were developed using per-area flux measurements, the degassing sub-model was developed to predict the 
difference in CH4 concentrations upstream and downstream of dams. When multiplied by water flow and 
divided by a reservoir's surface area, this concentration difference was considered the per-area degassing 
flux of CH4.

2.3.  Emission Pathway Sub-Models

Each emission pathway (CO2 diffusion, CH4 diffusion, ebullition, and degassing) was modeled as a multi-
variate relationship between the annualized per-area emission rates and potential predictor variables de-
scribed above, following suitable transformation. Flux rates are reported in units of CO2 equivalents, assum-
ing a per-mass 100-year warming potential for CH4 34-fold that of CO2 (IPCC 2013). Variable selection was 
carried out through the elastic net regression procedure which is particularly well-suited to “short and fat” 
datasets (small number of observations relative to the number of potential predictors) with colinear predic-
tor variables. The exact form of the resulting models is described in more detail in publicly available G-res 
documentation (Prairie et al., 2017, 2021) but the variables retained, the sign of their coefficients and their 
relative importance are summarized for each sub-model in Table 1. For completeness, the sub-model equa-
tions (G-res V.3) and variable definitions are reproduced in Supplementary Material (Tables S1 & S2). In 
order to facilitate attribution of reservoir GHG fluxes, G-res partitions CO2 flux from each reservoir into an-
thropogenic and non-anthropogenic fractions. For the purpose of this global GHG flux estimation and com-
parison with previous estimates, we report here only total CO2 emissions. Similarly, the G-res framework 
estimates the degassing pathway only for reservoirs with deep water intakes (deeper than the thermocline), 
where CH4 can accumulate to very high concentrations. Information on water intake depth was largely 
unavailable. However, due to the greater operational flexibility it offers, the deep-water withdrawal config-
uration is known to be more common among hydropower reservoirs. Thus, we used this (hydroelectricity 
as a reported usage in the GRanD database) as a criterion to consider degassing in the modeled emissions 
of a given reservoir. This assumption is clearly a simplification of reality, since deep water intake is neither 
systematic in, nor limited to, hydropower reservoirs. However, it remains the most sensible approach for 
a first-order estimate of degassing on a global scale given currently available information. Hydroelectricity 
was a reported use for 33.7% of the reservoirs in our global reservoir database, but these reservoirs tended to 
be large, such that cumulatively they accounted for 83% of the total global reservoir surface area.
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CO2 diffusion CH4 diffusion CH4 ebullition CH4 degassing

Age − −

Temperature + +

Soil C content +

Total phosphorus +

Reservoir area +

% Littoral area + +

Cumulative radiance a +

Hypolimnetic release (Y/N) x

Water residence time +

Diffusive CH4 emissions +
aCumulative radiance is estimated as the mean global horizontal radiance for the ice-free period multiplied by the 
number of ice-free months.
Notes. Minus (−) or plus (+) signs indicate a negative or positive relationship between the emission pathway and the 
parameter respectively. “x” indicates a binary decision whether to include a given reservoir in the global total based on 
its characteristics. See Table S1 for model equations, Table S2 for coefficient definitions and values, Prairie et al. (2021) 
for flux estimates used in model development and evaluation, and Prairie et al. (2017) for a more complete description 
of the models and their development.

Table 1 
Influence of Each Input Parameter on the Four Pathways Estimated by the G-res Model
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2.4.  Spatial Extrapolation

G-res submodels were applied to 4,563 reservoirs either in the GRanD database with the necessary driver 
data available (Lehner et al., 2011) or added by us (164 reservoirs). These reservoirs had a worldwide dis-
tribution and collectively represent 68% of estimated global reservoir surface area. The four largest reser-
voirs in the GRanD database (Lakes Victoria, Baikal, Ontario, and Onega) collectively occupy more than 
128,000 km2. As these systems are large natural lakes where damming has resulted in negligible increases 
in surface area and depth, these large lakes were excluded from our global estimate of reservoir GHG fluxes. 
The GRanD database underestimates the surface area of small reservoirs since it is a compilation of the 
world largest reservoirs (reservoirs exceeding 0.1 Mm3 in volumetric capacity). Because the G-res database 
used in this analysis (Prairie et al., 2021) relies heavily upon the GRanD database, it was subject to this 
same limitation. The extent of this underestimation is difficult to assess, but can be examined using the 
approach developed by Downing et al. (2006) and applied by others (e.g., Lehner et al., 2011), which relies 
on the statistical properties of a canonical set of reservoirs, extrapolated to a reasonable lower size limit. 
Using this approach, and discounting the four large lakes, yielded an estimated total global surface area for 
all reservoirs greater than 0.1 km2, of approximately 350,000 km2 (comprised of 87,800 reservoirs), which 
is close to estimates used in other recent global analyses (e.g., Deemer et al., 2016). To account for the dif-
ference in surface area between reservoirs represented in the G-res database and our estimated global total, 
we multiplied the total global fluxes from G-res database reservoirs by a factor of 1.47 (the ratio between 
an estimated global reservoir surface area of 350,000 km2 and the total surface area of reservoirs globally 
for which it was possible to use G-res to calculate all four G-res-estimated GHG flux pathways) to attain 
global flux estimates, and we distributed additional GHG fluxes spatially in proportion to the occurrence 
of the G-res database reservoir surface area. As noted above, following a necessary, albeit oversimplifying, 
assumption that only hydroelectric reservoirs have deep water intakes, we calculated a degassing flux only 
for those systems.

2.5.  Estimating Global Total Gas Fluxes and Associated Uncertainty

To avoid influence of extreme outliers on error estimates, we removed outliers using Cook's distance (cri-
terion for removal: Cook's distance >3*µ; Cook 1977). This resulted in removal of 3, 15, 3, and 2 reservoirs 
from G-res CO2 diffusion, CH4 diffusion, CH4 ebullition, and CH4 degassing models, respectively. To correct 
for bias associated with developing models using log-transformed data (Newman, 1993), we calculated re-

gression standard error of residuals (s) as 
 

2
Σ

DF

ˆi iy y
, where iy  is model-predicted flux, ˆiy  is measured 

flux, and DF is the number of degrees of freedom (number of available comparisons between measurements 
and model predictions minus the number of calibrated parameters in each G-res sub-model). We then ran a 
Monte Carlo analysis in which all model estimates were amended with a randomly determined error (with 
a Gaussian distribution and a mean equal to the standard error of residuals (s, defined above). Predicted 
per-reservoir fluxes were subsequently exponentiated and summed. This calculation was repeated 1,000 
times with random assignment of errors and the median and 95% confidence interval values for predict-
ed global total fluxes were determined based on distribution of results. Median values resulting from this 
exercise are presented as the most probable estimate (i.e., highest probability density) of global reservoir 
fluxes. This approach to propagating the uncertainty for each flux pathway model to estimate the global 
GHG footprint means that greater model uncertainty results in higher estimated global flux. This effect is 
not negligible. In the case of G-res models, the estimated global flux accounting for the uncertainty in the 
prediction of each individual reservoir was 1.48, 1.99, 4.45, and 4.88-fold higher than uncorrected totals for 
CO2 diffusion, CH4 diffusion, CH4 degassing and CH4 ebullition sub-models, respectively.

Fluxes reported by latitudinal region were binned into boreal, temperate, subtropical, and tropical regions, 
defined as >62°N and S, 35–62°N and S, 23.5–35°N and S, and <23.5°N and S, respectively. Fluxes were also 
binned and summed by climate zone, as defined by the IPCC (Rubel & Kottek, 2010). Climate zones used 
for this exercise were: boreal, cool temperate, temperate warm/dry, temperate warm/moist, tropical dry/
montane, and tropical moist/wet. Unless specified as climate-related (e.g., in Table 5), the terms boreal, 
temperate, and tropical refer to latitudinal regions.
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2.6.  Model Sensitivity and Efficiency Analyses

To evaluate G-res sensitivity to input data and model parameters, we 
sequentially increased individual model input parameters by 10% and 
evaluated the resulting change in model predictions. To evaluate the im-
portance of G-res model components, we performed an efficiency analy-
sis (as described in Nash & Sutcliffe, 1970), wherein model components 
were removed one at a time and the resulting change in Nash Sutcliffe 
Efficiency (NSE) was evaluated. NSE is a measure of model skill where 
(similar to r2) a value of 1 connotes perfect model predictions but where a 
value of zero indicates that a mean of measurements is as good a predic-
tor of measurements as the model being evaluated, and negative values 
indicate that a model's predictions do worse than simply using the mean 
of available measurements (Nash & Sutcliffe, 1970).

3.  Results and Discussion
3.1.  Model Performance

Although error associated with CO2 and CH4 flux predictions for indi-
vidual reservoirs was, in some cases, substantial (e.g., see Table  2 and 

Figure 2), each of the individual G-res submodels was reasonably proficient at predicting spatial variation 
in per-area fluxes, and, more importantly for this global analysis, performed well in predicting per-reservoir 
fluxes (NSE > 0.8 for CO2 and CH4 diffusion, and NSE > 0.5 for CH4 ebullition and degassing, Table 2, 
Figure 2). Further, the G-res submodels were bias-free in that slopes of least squares linear regressions be-
tween measured and model-estimated fluxes were not significantly different from unity for any of the G-res 
submodels (Figure 1). Submodels also performed well when outputs from more than one submodel were 
summed and compared with summed measurements from several systems (NSE: 0.71 and 0.83 for total CH4 
and Total C-based greenhouse gases, respectively). These comparisons were also free of apparent bias (Fig-
ure 2). G-res submodels were somewhat less skilled at predicting per-area fluxes than per-reservoir fluxes, 
but still performed better than an average of measurements in predicting per-area CO2 and CH4 fluxes, as 
indicated by positive NSE values (≥0.29 in all submodels, Table 2).

3.2.  Global CO2 and CH4 Fluxes

Using G-res, we estimate global flux of GHGs from reservoirs as 1,076 Tg 
CO2 eq. yr−1 (range: 730–2,412 Tg CO2 eq. yr−1) mainly as CH4 (328 and 
748  Tg CO2 eq. yr−1 for CO2 and CH4, respectively). For methane, our 
estimate of diffusive plus ebullitive CH4 emission (337 Tg CO2 eq. yr−1) 
is similar to that of Hertwich et al. (2013), and more than double that of 
Bastviken et al.  (2011), but somewhat smaller than other recent global 
estimates, which are based on averages of reported fluxes and range from 
606–2,380 Tg CO2 eq. yr−1 (Table 3). Degassing fluxes of CH4, which have 
not been accounted for in other global analyses, were the largest and also 
the most uncertain flux in our estimate, accounting for 411 Tg CO2 eq. 
yr−1 (95% confidence range: 227–1,261 Tg CO2 eq. yr−1). When degassing 
is included, our median global estimate of reservoir greenhouse gas flux-
es (Tg CO2 eq. for CO2 plus CH4) is among the largest that have been re-
ported, and is 45% higher than a recent estimate by Deemer et al. (2016). 
G-res-estimated average global per-area GHG emissions (Tg CO2 eq. km−2 
of reservoir surface area) are the highest that have been reported, exceed-
ing those of Deemer et al. (2016) and St. Louis et al. (2000), by 29% and 
36%, respectively.

Globally, we estimate that diffusive CH4 fluxes from reservoirs, which, 
of all CH4 flux pathways, have received the most attention to-date, are 
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Flux pathway

NSE NSE Median %

n Outliers
Per-
area

Per-
reservoir Error (IQR)

CO2 Diffusion 0.37 0.89 11 (−44–52) 169 3

CH4 Diffusion 0.52 0.84 −21 (−54–121) 160 15

CH4 Degassing 0.57 0.74 21 (−76–187) 38 2

CH4 Ebullition 0.29 0.58 14 (−84–318) 46 3

Notes. The number of outliers excluded from NSE and IQR calculations 
are also reported. See methods (Section 2.8) for description of the method 
used to exclude outliers.

Table 2 
Performance Statistics for G-res Submodels, Including Nash Sutcliffe 
Efficiency (NSE) Values for Both Per-Area and Per-Reservoir Predictions, 
Median and Interquartile Range Values for Percent Error for the Models, 
and the Number of Flux Estimates Used to Develop and Evaluate the 
Models

Figure 2.  G-res predicted CH4 and CO2 fluxes (Mg CO2 eq reservoir−1 yr−1) 
by pathway versus measurements. Nash Sutcliffe Efficiency values for 
G-res submodels (each flux pathway) are shown in Table 2.
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small relative to other reservoir GHG flux pathways, accounting for just 7% of the total CH4 flux and 5% of 
the greenhouse effect due to combined CH4 plus CO2 flux. In contrast, ebullition and, especially, degassing 
fluxes are comparatively large, accounting for 38% and 55% of the global total CH4 flux, respectively. Overall, 
diffusive fluxes of CO2 are substantial, accounting for almost one third (30.5%) of the greenhouse liability 
from reservoirs, but exert a smaller impact on greenhouse warming than reservoir-sourced CH4, which 
collectively accounts for 69.5% of the greenhouse warming effect due to reservoir emissions globally. This 
fraction would be substantially greater if a less conservative greenhouse warming potential were used for 
CH4. If, for example, we used the 20-year greenhouse warming potential (85, IPCC 2013) for CH4 instead 
of a 100-year greenhouse warming potential, CH4 would constitute 85% of total annual warming potential 
emitted from reservoirs. In addition, whereas virtually all of the CH4 emitted from reservoirs can be con-
sidered anthropogenic, a substantial portion of the global CO2 flux can be considered non-anthropogenic 
in origin as ∼69% of these emissions would have occurred even in the absence of reservoir construction 
(Prairie et al., 2017).

Although this analysis revises the estimate of global total diffusive CH4 flux and ebullitive CH4 flux down-
ward relative to other recent studies (Table 3), the total estimated global flux of CH4 (22.0 Tg y−1; range: 
13.4–58.8 Tg CH4 y−1) we report is higher than that estimated by other recent efforts (Table 3). This is due, 
in large part, to our novel inclusion of CH4 degassing in this global estimate of reservoir GHG fluxes. G-res 
per-area estimates of CH4 diffusion are lower than past estimates because the G-res models attempt to ac-
count for potential sampling bias associated with reported flux measurements. Reasons that past estimates 
of global diffusive CH4 fluxes, and global ebullitive CH4 fluxes may have been overestimated include: dis-
proportionate sampling of high-emission reservoirs, seasonal sampling that focuses on summer conditions 
(which tend to foster large GHG fluxes), inappropriate temporal averaging that neglects winter ice cover, use 
of littoral only emissions to represent emissions from the total surface area of reservoirs, and oversampling 
of highly active regions within reservoirs. In the formulation of G-res models, every effort was taken to ac-
count for these potential sources of bias in the measurement data. For example, measurements of CH4 and 
CO2 diffusion used in model calibration were temperature-corrected to account for potential seasonal bias 
in sampling, and ebullitive emissions during ice-covered months (i.e., months with mean air temperatures 
<0°C) were assumed to be zero while diffusive emissions were assumed to be emitted at ice-off after pro-
ceeding under 4°C conditions during the ice-covered period. Although sensible, these assumptions remain 
largely unverified by field observations and might still overestimate CH4 diffusive flux, as a portion of the 
CH4 produced under ice can be oxidized before ice-off. However, we argue that these modeling assumptions 
represent an improvement over simply extrapolating ice-free period fluxes to the whole year. These efforts 
resulted in comparatively low annual estimates of global diffusive CH4 fluxes and CH4 ebullition fluxes. 
However, the addition of CH4 degassing, arguably a less certain flux (due to modeling assumptions and 
fewer data points), more than compensated for lower estimates of other CO2 and CH4 fluxes, leading to an 
estimate of global reservoir CH4 fluxes that is similar to, or greater than, other recent estimates (Table 3) and 
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Global reservoir area used 
(103 km2) CO2 (Tg CO2 eq yr−1) CH4 (Tg CO2 eq yr−1)

CO2 + CH4 (Tg CO2 eq 
yr−1)

CO2 + CH4 (Mg 
CO2 eq km−2 yr−1)

This study 350 328 (276–414) 748 (454–1,998) 1,076 (730–2,412) 3,074 (2,086–6,891)

This study (no degassing) 350 328 (276–414) 337 (227–737) 664 (503–1,151) 1,897 (1,437–3,289)

Deemer et al. (2016) 311 135 606 741 2,383

Hertwich (2013) 330 279 331 610 1,815

Bastviken et al. (2011) 340 136 400

Barros et al. (2011) 500 176 680 856 1,712

St-Louis et al. (2000) 1,500 1,000 2,380 3,380 2,253

Notes. All values have been converted to mass CO2 eq. yr−1 using a 100-year greenhouse warming potential factor of 34 for CH4. Ranges in parentheses represent 
95% confidence intervals for G-res v3 estimates. Differences between studies in total estimated global reservoir surface area generally result from differences 
in statistical methods for estimating the cumulative surface area of small reservoirs. In some cases total CH4 fluxes differ slightly from sums of individual flux 
pathways due to rounding.

Table 3 
Global Reservoir, Year-2020 Fluxes of CO2 and CH4 From This Study and Other Recent Analyses
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comparable to other major global anthropogenic CH4 sources such as landfills, biomass burning, and rice 
paddies (68, 29, and 30 Tg CH4 y−1, respectively; Saunois et al., 2020). We estimate that collectively reservoirs 
account for ∼6% (range: 3.7%–17.4%) of total global anthropogenic CH4 emissions (340–381 Tg CH4 y−1) and 
∼14% (range: 7.1%–50.4%) of total global freshwater CH4 emissions (Saunois et al., 2020).

The likely global importance of CH4 degassing is also interesting from a GHG management perspective as 
it suggests some potential to limit or reduce reservoir CH4 emissions. G-res output suggests that if all res-
ervoir CH4 degassing were eliminated, global GHG fluxes from reservoirs would be reduced by 31%–52%. 
Because high degassing fluxes are most likely to occur when water is drawn through a dam from a reser-
voir's hypolimnion, where low-O2 conditions allow CH4 to accumulate, constructing dams that draw water 
from well-oxygenated near surface portions of a reservoir's water column or managing water withdrawals 
to minimize release of hypolimnetic waters could substantially reduce downstream degassing CH4 fluxes. 
For example, a simulated increase in water withdrawal depth by as little as 3 m (from the hypolimnion to 
the metalimnion) yielded a 92% reduction in CH4 degassing emissions from a Malaysian reservoir (Batang 
Ai) (Soued & Prairie, 2020). It is also possible that retrofitting existing dams with epilimnetic water with-
drawal structures or hypolimnetic aeration systems could reduce downstream degassing, while also likely 
mitigating other environmental impacts of dams on downstream ecosystems (Michie et al., 2020). While 
the effectiveness, costs, and potential tradeoffs associated with these solutions are not yet documented, they 
certainly deserve further attention and study.

3.3.  Spatial Distribution of Reservoir GHG Fluxes

G-res allows a first-ever analysis of the global distribution of reservoir greenhouse gas fluxes that takes into 
account characteristics of reservoirs beyond reservoir surface area. G-res estimates of reservoir per-area 
greenhouse gas fluxes were quite variable, spanning more than three orders of magnitude (Range: 115–
145,472 g CO2 eq. m−2 y−1). Highest per-area fluxes generally occurred near the equator and decreased at 
higher latitudes (Figure 3a). Further, the very highest per-area fluxes were driven primarily by CH4 degas-
sing, although ebullition fluxes were also quite substantial. For example, CH4 degassing was the largest sin-
gle flux pathway for GHG emissions in all of the top 10 GHG emitting reservoirs globally. The pattern where 
high fluxes occurred near the equator was not particularly surprising given G-res model structure (i.e., that 
effective temperature is an input parameter to G-res diffusive CO2 and CH4 sub-models), and is consistent 
with studies showing increasing CH4 production rates with increasing temperatures (Barros et al., 2011; 
Thottathil et al., 2019; Yvon-Durocher et al., 2014), although see also Deemer et al.  (2016) and Deemer 
and Holgerson (2021). In addition, annual fluxes tended to be lower at high latitudes due to the influence 
of freezing and the associated reduction of gas production. Although the pattern of decreasing fluxes with 
increasing latitude was unsurprising, an understanding of the magnitude of the latitude effect on per-area 
GHG fluxes is new. Further, the dominance of degassing and ebullition CH4 fluxes throughout the tropics is 
a novel insight, deserving further investigation.

Similar to per-area fluxes, the highest GHG mass fluxes also occurred at low latitudes. 60.4% of total CH4 
emissions were estimated to occur between the Tropic of Cancer and the Tropic of Capricorn, and 75.2% of 
CH4 emissions were estimated to occur within “tropical” climate zones, as defined by the IPCC (Rubel & 
Kottek, 2010). The tropical latitude band contained 14.9% of the reservoirs in our global database, while the 
subtropical band contained 22.7%. Despite some similarities in distribution between per-area GHG fluxes 
and GHG total mass fluxes, there were also some important differences, due to the uneven distribution of 
reservoir surface area by latitude (Compare Figures 3a and 3b). Mass fluxes of different gases exhibited 
different patterns with latitude, as did fluxes due to different CH4 flux pathways (Table S3). CO2 dominated 
fluxes at high northern latitudes (>63°N), accounting for 83% of total boreal reservoir GHG fluxes, whereas 
CH4 accounted for almost half (48%) of the total greenhouse warming potential from reservoirs in temper-
ate latitudes and the majority of total reservoir-sourced greenhouse warming potential in subtropical, and 
tropical latitudes (66.5% and 77.9%, respectively; Figure 3b). This latitudinal pattern results from the fact 
that CH4 emissions (for CH4 diffusion and, consequently, CH4 degassing) tended to be depressed by low 
temperatures at high latitudes or (for ebullition) by low estimates of cumulative horizontal irradiance or 
low numbers of ice-free months. The relative contribution of bubbling is also variable among regions. In 
the boreal zone, CH4 bubbling and degassing represented comparatively small fractions of total CH4 fluxes 
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(33.6% and 13.2%, respectively) whereas these flux pathways comprised a greater fraction of total CH4 fluxes 
in temperate and tropical zones. Degassing was particularly important at tropical latitudes, accounting for 
49% of all GHG fluxes (in CO2 eq.) in that region. However, degassing accounted for a much smaller fraction 
of total GHG in the temperate zone (5.2%), where ebullition was a more important flux pathway, accounting 
for 38.5% of the GHG flux (in CO2 eq.).

CH4 degassing, CH4 ebullition, and CO2 diffusion were each the single largest GHG flux pathway for 287 
(6.2%), 1,513 (33.2%), and 2,763 (60.6%) of the reservoirs in the G-res database, respectively, whereas CH4 
diffusion was never the dominant flux pathway in any reservoir (Figure 4). Hence, although CH4 degassing 
constitutes a large portion of the global flux, this large flux is due to large per-area fluxes from a small frac-
tion of reservoirs globally. In fact, according to G-res, the top 100 degassing reservoirs account for >90% of 
the global CH4 degassing flux, and almost half (47%) of the global CH4 degassing flux can be attributed to 
just 10 reservoirs. Although degassing fluxes have not been measured in most of these systems, CH4 degas-
sing fluxes have been measured in the reservoirs with the second and third highest predicted CH4 degassing 
yields globally (Balbina and Tucurui reservoirs, respectively). In each case G-res-estimated CH4 degassing 
flux was within a factor of two of direct measurement-based estimates. High degassing fluxes from a rela-
tively small number of reservoirs, generally occurring at tropical latitudes, suggests that G-res predictions 
are sensitive to assumptions about which reservoirs contribute CH4 to the atmosphere via this pathway. 
This highlights the need for both a broader empirical assessment of degassing emissions across a diversity 
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Figure 3.  Global distribution and magnitudes of reservoir total (CH4 + CO2) GHG fluxes. Each one-degree grid-cell is color-coded according to G-res-predicted 
total CO2 plus CH4 flux from reservoirs in that cell. Panel A shows average per-reservoir-area rates of emissions (g CO2 eq. m−2 yr−1), with average per-reservoir-
area fluxes for each 1-degree latitude band shown in the stacked line plot to the right (also g CO2 eq. m−2 yr−1). Panel B shows total mass fluxes of CH4 + CO2 
GHG fluxes from reservoirs in each 1° × 1° grid cell (Gg CO2 eq. reservoir−1 yr−1). Distribution of total mass flux by emission pathway and 1° latitude band is 
shown to the right of the map. In both panels, fluxes in the stacked line plots are additive such that in panel A the height of peaks represents average per-
reservoir-area total flux per degree of latitude, while in panel B the height of the peaks represents the total reservoir-sourced GHG flux to the atmosphere for 
each 1° latitude band. White areas are regions lacking large reservoirs. Gridded model output available for download (Harrison et al., 2021).
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of reservoirs, and more data on reservoir intake depth. Nevertheless, from a GHG mitigation perspective, 
the skewed distribution of reservoir degassing is intriguing in that it suggests that substantial reductions in 
CH4 emissions via degassing may be possible by focusing mitigation efforts on a relatively small number of 
high-flux systems. In contrast to CH4 degassing fluxes, which were limited to a relatively small subset of the 
global total number of reservoirs, CO2 diffusion was the single largest flux from more than half of reservoirs 
in the G-res database, but these fluxes were on-average much smaller than degassing and ebullitive fluxes 
on a per-area CO2 eq. basis. Focusing solely on CH4 fluxes, a somewhat different picture emerges. In this 
case, CH4 degassing CH4 ebullition, and CH4 diffusion, were the single largest CH4 flux in 504 (11.0%), 3,338 
(73.2%), 721 (15.8%) of G-res database reservoirs, respectively, highlighting the importance of ebullition as 
the largest CH4 flux pathway in a majority of reservoirs. Dominant fluxes varied regionally in surprisingly 
consistent ways. Regions where ebullition was the single greatest GHG flux occurred in perennially ice-free 
regions with high rates of cumulative annual solar irradiance, consistent with observations in the few res-
ervoirs where solar irradiance has been considered as a potential driver of CH4 ebullition (Wik et al., 2014; 
Figure S3). In contrast, reservoir GHG fluxes in temperate regions with low cumulative annual solar irradi-
ance tended to be dominated by CO2 diffusion (Figure 4 and Figure S3). CO2 diffusion also dominated GHG 
fluxes in north temperate and, especially, boreal regions. CO2 diffusion was also the single largest GHG 
flux pathway throughout much of China, Japan, Korea, and the Eastern United States. In contrast, CH4 
ebullition tended to dominate GHG fluxes in the western United States, parts of Brazil, throughout much 
of southern Europe, in much of Africa, India, New Zealand, and western Australia. Degassing was only 
infrequently the dominant flux pathway regionally, but the regions where it was important included: the SE 
US, parts of Brazil, Eastern Europe, Central and Northern Africa (in the Nile River valley) as well as parts 
of both western and eastern China (Figure 4).

Importantly, the highest G-res-predicted per-area rates of emission occurred in exactly the regions where 
the majority of ongoing and planned new reservoir construction is anticipated to occur in coming dec-
ades: the developing tropics and subtropics (Zarfl et al., 2015). This suggests that dam construction could 

significantly increase global GHG fluxes from reservoir systems global-
ly. Furthermore, the two largest estimated pathways for CH4 emissions 
(ebullition and degassing) are also the most uncertain due to limited 
measurements (Tables 2 and 4) and comparatively unstable models (i.e., 
models that are sensitive to small changes in input parameters [see Sec-
tion 3.4 below]). In the case of the degassing submodel, G-res estimates 
may be too low if hypolimnetic water release is more common than we 
estimate. Conversely G-res degassing estimates could be too high if hy-
polimnetic water release is less common or less constant (e.g., due to 
seasonal destratification) than estimated here. More work is required to 
better constrain these fluxes, both to improve understanding of aquatic C 
cycling and provide GHG management-relevant information. Similarly, 
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Figure 4.  Dominant flux pathways for C-based greenhouse gases for each 1° × 1° grid cell. White areas are regions lacking large reservoirs.

Flux pathway (Tg CO2 eq yr−1)

CH4 diffusion 54 (42–77)

CH4 ebullition 283 (184–660)

CH4 degassing 411 (227–1,261)

CO2 diffusion 328 (276–414)

Total (all flux pathways) 1,076 (730–2,412)

Table 4 
G-res-Predicted Global, Year-2020 Fluxes of CH4 and CO2 by Flux 
Pathway
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G-res does not currently provide an estimate of CO2 degassing. Although 
this component is likely small at the global scale, it may be significant in 
individual cases and should be further investigated.

3.4.  Model Sensitivity, Efficiency, and Future Directions

3.4.1.  Model Efficiency Analysis

An analysis of model efficiency, wherein model components are re-
moved sequentially to evaluate the contribution of each to model pre-
dictive capacity, suggests that climate and geomorphological parameters 
are particularly important in determining G-res model skill (Table 6). In 
particular, the removal of the temperature-associated parameters (cu-
mulative radiation and ice cover duration parameters) from the CH4 
ebullition model each substantially decreased G-res model skill, with 
the removal of each of these parameters from the model decreasing the 
NSE from 0.58 to to −6.13 (Tables 2 and 6). The removal of the temper-
ature parameter from the CH4 degassing model (not directly, but rather 

through its influence on the diffusive CH4 model, which in-turn is an input to the CH4 degassing model) 
substantially decreased that model's skill (NSE decreased from 0.74 to −3.24; Tables 2 and 5), and the re-
moval of the temperature parameter from the CH4 diffusion model decreased that G-res submodel's NSE 
from 0.84 to 0.46 (Tables 2 and 6). The temperature parameter in the CO2 diffusion model had very little 
effect (decreased NSE value by only 0.17; Table 6), but the strong impact of the removal of temperature 
parameters on three out of the four G-res-estimated flux pathways suggests that temperature should be 
an important focus for attention and improvement in future iterations of the G-res model. The predic-
tive skill of the G-res CH4 ebullition and CH4 diffusion submodels was also strongly dependent on the 
estimate of littoral area. Excluding the littoral area parameter from the CH4 ebullition model decreased 

NSE from 0.58 to 0.30, and excluding the littoral area parameter from 
the CH4 diffusion model decreased NSE from 0.84 to −0.36. In addition 
to its direct impact on CH4 ebullition and CH4 diffusion model skill, the 
littoral area parameter also affects the CH4 degassing model through its 
impact on predicted CH4 diffusion, which is a critical input to the CH4 
degassing model. Model skill for the CH4 degassing submodel (NSE) 
decreased from 0.74 to −0.26 when the littoral area parameter was re-
moved from the diffusive CH4 flux model (Table 6). Because the littoral 
estimate strongly influences all three CH4 flux pathways, which col-
lectively account for about 70% of the global greenhouse gas liability 
due to reservoir emissions (CO2 eq.), this is a very important parameter 
on which to focus energy in developing future iterations of the G-res 
model. The littoral area parameter is quite uncertain as it necessarily 
(due to a lack of better global scale data) relies on a simple algorithm 
estimating reservoir bathymetry as a function of average and maximum 
depth (See equations for "Littoral Fraction" and "Bathymetric Shape" in 
Table S1). Hence by improving estimates of this parameter, for example 
by using better reservoir geomorphology information, future iterations 
of G-res may improve substantially. In contrast to temperature-related 
and geomorphometric parameters, G-res model skill was relatively ro-
bust to removal of other input parameters such as reservoir age, water 
residence time, soil C content, total P loading, and reservoir surface 
area. In each case, parameter removal reduced model NSE by less than 
0.32 units, and often far less (Table 6).

3.4.2.  Model Sensitivity Analysis

A sensitivity analysis in which G-res model inputs and coefficients were 
increased by 10% in order to evaluate model response (Table  7) was 
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Climate zone

CH4 and CO2 % of 
total(Tg CO2 eq. yr−1)

Boreal 29.6 2.8

Cool temperate 107.6 10.0

Temperate warm/dry 61.4 5.7

Temperate warm/moist 67.7 6.3

Tropical dry/montane 350.1 32.5

Tropical moist/wet 456.4 42.4

  Total Temperate 129.1 22.0

  Total Tropical 806.5 75.0

Table 5 
G-res-Estimated Greenhouse Gas Fluxes by Climate Zone for Year-2020 
Conditions

Model parameter removed
Resulting 

NSE

Change in 
NSE from 

original model

No solar radiation (CH4 ebullition) −6.13 −6.71

No ice cover correction (CH4 ebullition) −6.13 −6.71

No temperature (CH4 degassing) −3.24 −4.08

No littoral area (CH4 diffusion) −0.36 −1.20

No littoral area (CH4 degassing) −0.26 −1.00

No temperature (CH4 diffusion) 0.46 −0.38

No reservoir age (CO2 diffusion) 0.58 −0.32

No littoral area (CH4 ebullition) 0.30 −0.28

No temperature (CO2 diffusion) 0.72 −0.17

No reservoir age (CH4 diffusion) 0.69 −0.15

No water residence time (CH4 degassing) 0.64 −0.10

No total P (CO2 diffusion) 0.84 −0.05

No soil C content (CO2 diffusion) 0.85 −0.04

No reservoir area (CO2 diffusion) 0.87 −0.02

Notes. Model parameters where removal resulted in loss of little model 
skill (<0.38 NSE units) are shaded whereas parameters to which model 
skill was particularly sensitive are left unshaded.

Table 6 
Results From a Model Efficiency Analysis Showing How Nash Sutcliffe 
Efficiency (NSE), an Indicator of Model Skill, Changes as a Function of 
Removal of Individual Model Components
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consistent with the efficiency analysis in that it suggested that G-res 
model predictions are sensitive to small changes in temperature- and 
geomorphology-related parameters but comparatively insensitive to 
changes in other parameters. The overall model was quite insensitive 
to 10% increases in the C content of inundated soils, total P content, 
and reservoir age, with model predictions changing far less than 10% 
in each case. As expected, based on the model formulation, predicted 
fluxes scale approximately linearly with reservoir surface area. In con-
trast, but consistent with the results of the efficiency analysis described 
above, G-res predictions were very sensitive to small (10%) increases 
in (and hence to small errors in estimates of) littoral area fraction in 
reservoirs, increasing more than 11-fold. G-res predictions were also 
quite sensitive to changes in temperature-related parameters, includ-
ing effective temperature, cumulative radiation, and the length of the 
ice-free season. As with the littoral area parameter, there is also room 
for improvement in the temperature-related parameters. At the global 
scale there is not currently a global water temperature database for res-
ervoirs; nor is there a widely accepted method to reliably and accurately 
link sediment and water column temperatures to air temperatures. Any 
enhancements inability to model water temperatures at large scales is 
likely to enhance understanding of regional and global reservoir GHG 
fluxes.

3.4.3.  Future Directions

Taken together, results from efficiency and sensitivity analyses suggest that littoral area and temperature 
are two major sources of G-res model uncertainty, and hence opportunities for model enhancement. 
Work to link air temperatures to water temperatures (esp. bottom-water temperatures) and improve 
estimates of lake bathymetry and stratification dynamics at large scales would both be useful. These 
two parameters are also changing with a changing climate (Kraemer et al., 2015; O'Reilly et al., 2015) 
and likely to change further in coming decades in manners that are likely to accelerate reservoir GHG 
emissions (i.e., higher temperatures, deeper thermoclines; Woolway et al., 2020), highlighting a need 
to study, monitor, and improve methods for estimating changing water temperatures and stratification 
regimes.

In addition to better constraining temperature and geomorphometric model input parameters, there 
are some additional model improvements that should be considered in future iterations of regional 
and global lake and reservoir GHG emissions models. One of these improvements is the inclusion of 
an explicit trophic status or primary production parameter. Several recent studies have reported strong 
correlations between primary production and CH4 emissions (Beaulieu et al., 2019; Deemer et al., 2016; 
DelSontro et al., 2018; Harrison et al., 2017), and there is good reason to think there is a causal link 
between primary production and CH4 emission. By providing organic C and creating the anoxic condi-
tions that favor CH4 production, biological production in surface waters is likely to fuel higher rates of 
CH4 emission, leading to higher emissions from eutrophic systems than oligotrophic systems. To some 
extent, G-res models use cumulative radiance and total phosphorus concentrations as indirect and im-
perfect proxies for primary productivity. Yet, no large-scale models, including G-res, currently include 
a primary production term as a model input. This is because there are no global datasets of lake or res-
ervoir primary productivity that are sufficiently robust to be of use for this application. However, work 
is ongoing in this area (Sayers et al., 2015), and this is likely to change within the next several years. 
Another area meriting additional investigation is understanding how global reservoir GHG emissions 
will change in the future with the ongoing and anticipated global boom in reservoir impoundment 
(Zarfl et al., 2015).
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Model parameter modified

% Change in G-res-predicted global 
CO2 + CH4 emissions resulting 

from a 10% Increase in input 
parameter values (g CO2 eq. yr−1)

Littoral area fraction 191.1

Effective temperature 60.9

Solar radiation 33.7

Ice-free period 33.7

Reservoir surface area 10.1

Actual age plus 10 years −3.6

Water residence time 2.4

Total P 2.5

Inundated soil C content 0.8

Notes. Values in bold are greater than 10%, indicating the G-res model is 
comparatively sensitive to changes in the associated input parameters.

Table 7 
Results of a Model Sensitivity Analysis Showing G-res Predictions of Total 
Global Reservoir GHG Flux Change as a Function of a 10% Increase in 
Various Model Drivers
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4.  Conclusion
Despite remaining uncertainties and opportunities for further improvement, the work presented here rep-
resents a significant step forward in understanding and representing global and regional reservoir GHG 
fluxes. Here we present the first-ever spatially and temporally explicit, global estimates of reservoir CO2 and 
CH4 fluxes modeled for individual reservoirs and not simply based on the product of mean flux rates and 
reservoir surface area. In addition, we present a first-ever spatially explicit estimate of the global reservoir 
CH4 degassing flux. Analysis of these novel results grants several important new insights including the 
following: (a) diffusive CH4 fluxes are probably lower than has previously been estimated; (b) CH4 fluxes 
via ebullition and degassing are larger than previously recognized, but also quite poorly constrained; (c) 
these fluxes are highest in the tropics and subtropics, which, together, are expected to account for 65%–75% 
of new hydropower dam construction and reservoir impoundment in coming decades (Zarfl et al., 2015); 
(d) global distribution of emissions shows that the contribution of CO2 flux is the most important in boreal 
climate while CH4 degassing and ebullition contribution is dominant in tropical and subtropical climate; 
and (e) G-res estimated reservoir GHG fluxes are quite sensitive to input parameters that are both poorly 
constrained and likely to be strongly influenced by climate change in coming decades. Together these re-
sults highlight a critical need both to better understand climate-related drivers of GHG emission and the 
relationship between these drivers and the highly uncertain CH4 ebullition and degassing fluxes.

Data Availability Statement
Datasets and model output for this research are available in these in-text data citation references: Harrison 
et al. (2021), and Prairie et al. (2021).
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