hydrology

Flow Regime, Temperature, and Biotic Interactions Drive Differential Declines of Trout Species Under Climate Change

Source: 
PNAS- Proceedings of the National Academy of Sciences
Year: 
2011
Abstract: 

Broad-scale studies of climate change effects on freshwaterspecies have focused mainly on temperature, ignoring criticaldrivers such as flow regime and biotic interactions. We usedownscaled outputs from general circulation models coupled with a hydrologic model to forecast the effects of altered flows andincreased temperatures on four interacting species of trout across the interior western United States (1.01 million km2), based onempirical statistical models built from fish surveys at 9,890 sites. Projections under the 2080s A1B emissions scenario forecast amean 47% decline in total suitable habitat for all trout, a groupof fishes of major socioeconomic and ecological significance. We project that native cutthroat trout Oncorhynchus clarkii, already excluded from much of its potential range by nonnative species, will lose a further 58% of habitat due to an increase in temperatures beyond the species’ physiological optima and continuednegative biotic interactions. Habitat for nonnative brook troutSalvelinus fontinalis and brown trout Salmo trutta is predictedto decline by 77% and 48%, respectively, driven by increases in temperature and winter flood frequency caused by warmer, rainier winters. Habitat for rainbow trout, Oncorhynchus mykiss, isprojected to decline the least (35%) because negative temperature effects are partly offset by flow regime shifts that benefit the species. These results illustrate how drivers other than temperature influence species response to climate change. Despite some uncertainty, large declines in trout habitat are likely, but our findings point to opportunities for strategic targeting of mitigation efforts to appropriate stressors and locations.

Author(s): 

Seth J. Wengera, Daniel J. Isaak, Charles H. Luce, Helen M. Neville, Kurt D. Fausch, Jason B. Dunham,Daniel C. Dauwalter, Michael K. Young, Marketa M. Elsner, Bruce E. Rieman, Alan F. Hamlet, and Jack E. Williams

Contact: 
Notes: 
Category: 

Hydropower Relicensing and Climate Change

Source: 
JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION
Volume: 
1-7
Year: 
2011
Abstract: 

Hydropower represents approximately 20% of the world’s energy supply, is viewed as both vulnerable to global climate warming and an asset to reduce climate altering emissions, and is increasingly the target of improved regulation to meet multiple ecosystem service benefits. It is within this context that the recent decision by the United States Federal Energy Regulatory Commission to reject studies of climate change in its consideration of reoperation of the Yuba-Bear Drum-Spaulding hydroelectric facilities in northern California is shown to be poorly reasoned and risky. Given the rapidity of climate warming, and its anticipated impacts to natural and human communities, future long-term fixed licenses of hydropower operation will be ill prepared to adapt if science-based approaches to incorporating reasonable and foreseeable hydrologic changes into study plans are not included. The licensing of hydroelectricity generation can no longer be issued in isolation due to downstream contingencies such as domestic water use, irrigated agricultural production, ecosystem maintenance, and general socioeconomic well-being. At minimum, if the Federal Energy Regulatory Commission is to establish conditions of operation for 30-50 years, licensees should be required to anticipate changing climatic and hydrologic conditions for a similar period of time.

Author(s): 

Viers, Joshua H

Contact: 
File attachments: 

Assessing Influcence of Hydrology, Physiochemistry, and Habitat on Stream Fish Assemblages Across a Changing Landscape

Source: 
Journal of the American Water Resources Association
Volume: 
45-1
Year: 
2009
Abstract: 

We evaluated the impact of land cover on fish assemblages by examining relationships between stream hydrology, physicochemistry, and instream habitat and their association with fish responses in streams draining 18 watersheds of the Lower Piedmont of western Georgia. Several important relationships between land use and physicochemical, hydrological, and habitat parameters were observed, particularly higher frequency of spate flows, water temperatures, and lower dissolved oxygen (DO) with percentage impervious surface (IS) cover, higher habitat quality with percentage forest cover, and elevated suspended solid concentrations with percentage pasture cover. Fish assemblages were largely explained by physicochemical and hydrological rather than habitat variables. Specifically, fish species diversity, richness, and biotic integrity were lower in streams that received high frequency of spate flows. Also, overall fish assemblage structure as determined by nonmetric multidimensional scaling was best described by total dissolved solids (TDS) and DO, with high TDS and low DO streams containing sunfish-based assemblages and low TDS and high DO streams containing minnow-based assemblages. Our results suggest that altered hydrological and physicochemical conditions, induced largely by IS, may be a strong determinant of fish assemblage structure in these lowland streams and allow for a more mechanistic understanding of how land use ultimately affects these systems.

Author(s): 

Brian S. Helms, Jon E. Schoonover, and Jack W. Feminella 

Contact: 
Notes: 
Category: 

Climate Change and Water Resources Management: A Federal Perspective

Source: 
USGS- Circular 1331
Year: 
2009
Abstract: 

Many challenges, including climate change, face the Nation’s water managers. The Intergovernmental Panel on Climate Change (IPCC) has provided estimates of how climate may change, but more understanding of the processes driving the changes, the sequences of the changes, and the manifestation of these global changes at different scales could be beneficial. Since the changes will likely affect fundamental drivers of the hydrological cycle, climate change may have a large impact on water resources and water resources managers.The purpose of this interagency report prepared by the U.S. Geological Survey (USGS), U.S. Army Corps of Engineers (USACE), Bureau of Reclamation (Reclamation), and National Oceanic and Atmospheric Administration (NOAA) is to explore strategies to improve water management by tracking, anticipating, and responding to climate change. This report describes the existing and still needed underpinning science crucial to addressing the many impacts of climate change on water resources management.

Author(s): 

Brekke, Levi D., Julie E. Kiang, J. Rolf Olsen, Roger S. Pulwarty, David A. Raff, D. Phil Turnipseed, Robert S. Webb, and Kathleen D. White  

Contact: 
Notes: 

Pages